Search results for: physical and mechanical tests for Marls
11725 Benefits of Therapeutic Climbing on Multiple Components of Attention in Attention Deficit Hyperactivity Disorder Children
Authors: Elaheh Hosseini, Otmar Bock, Monika Thomas
Abstract:
The purpose of the present study was to determine the effect of climbing therapy on the components of attention of children with attention-deficit hyperactivity disorder (ADHD). Forty children with ADHD were assigned to either an intervention group or a control group. The exercise group participated in a climbing therapy program for ten weeks, whereas no intervention was administered to the control group. All two groups were then assessed with the same battery of attention tests used in our earlier study. We found that compared to the ‘intervention’ group, performance was higher in the ‘control’ group on tests of sustained, divided and distributed attention, on all four tests. The intervention group showed a significant improvement in components of attention after ten weeks. From this we conclude that climbing therapy can improve the attention of children with ADHD and can be considered as a promising intervention and a standalone treatment for children with ADHD.Keywords: ADHD, climbing therapy, distributed attention, divided attention, selective attention, sustained attention
Procedia PDF Downloads 16211724 Simulation of Single-Track Laser Melting on IN718 using Material Point Method
Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz
Abstract:
This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics
Procedia PDF Downloads 5911723 Performance Evaluation of Iar Multi Crop Thresher
Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam
Abstract:
Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher
Procedia PDF Downloads 35011722 Contesting Discourses in Physical Education: A Critical Discourse Analysis of 20 Textbooks Used in Physical Education Teacher Education in Denmark
Authors: Annemari Munk Svendsen, Jesper Tinggaard Svendsen
Abstract:
The purpose of this study was to investigate different discourses about the body, movement and the main progression in and aim of Physical Education (PE) that are immersed within Physical Education Teacher Education (PETE) textbooks. The study was based on an examination of Danish PETE course documents listing 296 educational texts prescribed by PETE teachers for PETE programs in Denmark. It presents a more specific analysis of the 20 most used textbooks in Danish PETE. The study found three different discourses termed: (1) Developing the potential for sport, (2) Basis for creative sensing and (3) Being part of a cultural ballast. These discourses represent different ways of conceptualising and appraising PE as a school subject. The results also suggest that PETE textbooks are deeply involved in the (re)construction, struggling and ‘working’ of classical discourses in PE. Furthermore, that PETE textbooks comprise powerful documents that through their recurrent use of high modality are tending to be unequivocal in their suggestions for PE practices. On the basis of these findings, the presentation suggests that PETE teachers may use textbook analysis in the educational program as a tool for enhancing critical reflections upon central ideological dilemmas in PE.Keywords: critical discourse analysis, critical reflection, physical education teacher education, textbooks
Procedia PDF Downloads 29511721 Mechanical and Tribological Characterization of Squeeze Cast Al 6061 Alloy Reinforced with SiC and Al₂O₃ Particulates
Authors: Gurcan A. B., Baker T. N.
Abstract:
Due to economic and environmental requirements, it is becoming increasingly important to reduce vehicle weight. The first approach consisted in using light materials with high thermal conductivity, such as aluminium alloys. This choice allowed significant mass reduction and lower temperature but required recourse to ventilated discs. Among aluminium alloys, Al 6xxx series alloys enjoy the highest strength-to-weight ratio and, therefore, have found wide applications in the automobile and aerospace industries. However, these alloys lose their high strength rapidly when they are exposed to elevated temperatures. This rapid decline in the strength is directly related to the coarsening of very fine precipitates which are then not as effective in obstructing the dislocations. The incorporation of micro-scale and nano-scale particulates in aluminium systems can greatly enhance their mechanical characteristics.Keywords: mechanical and tribological behaviour, scanning electron microscope, optical test, mechanical properties test, experimental test
Procedia PDF Downloads 5511720 The Mechanical Behavior of a Chemically Stabilized Soil
Authors: I Lamri, L Arabet, M. Hidjeb
Abstract:
The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction
Procedia PDF Downloads 48811719 Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts
Authors: Mohammed Fayez Al Rez
Abstract:
Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases.Keywords: electrospinning, poly(ε-caprolactone) (PCL), tissue-engineered vascular graft, tubular bilayered scaffolds, vascular cells
Procedia PDF Downloads 29411718 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load
Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul
Abstract:
While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application
Procedia PDF Downloads 39811717 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.Keywords: behavioural biometric, face biometric, neural network, physical biometric, signature biometric
Procedia PDF Downloads 47411716 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts
Authors: Qiao Mao
Abstract:
There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.Keywords: PowerTech, STEAM contest, mechanical beast, arts' role
Procedia PDF Downloads 8511715 A Longitudinal Study to Develop an Emotional Design Framework for Physical Activity Interventions
Authors: Stephanie Hewitt, Leila Sheldrick, Weston Baxter
Abstract:
Multidisciplinary by nature, design research brings together varying research fields to answer globally significant questions. Emotional design, a field which helps us create products that influence people’s behaviour, and sports psychology, containing a growing field of recent research which focuses on understanding the emotions experienced through sport and the effects this has on our health and wellbeing, are two research fields that can be combined through design research to tackle global physical inactivity. The combination of these research fields presents an opportunity to build new tools and methods that could help designers create new interventions to promote positive behaviour change in the form of physical activity uptake, ultimately improving people’s health and wellbeing. This paper proposes a framework that can be used to develop new products and services that focus on not only improving the uptake and upkeep of physical activity but also helping people have a healthy emotional relationship with exercise. To develop this framework, a set of comprehensive maps exploring the relationship between human emotions and physical activity across a range of factors was created. These maps were then further evolved through in-depth interviews, which analysed the reasons behind the emotions felt, how physical activity fits into the daily routine and how important regular exercise is to people. Finally, to progress these findings into a design framework, a longitudinal study was carried out to explore further the emotional relationship people of varying sporting abilities have overtime with physical activity. This framework can be used to design more successful interventions that help people to not only become more active initially but implement long term changes to ensure they stay active.Keywords: design research, emotional design, emotions, intervention, physical activity, sport psychology
Procedia PDF Downloads 13011714 Sustainable Milling Process for Tensile Specimens
Authors: Shilpa Kumari, Ramakumar Jayachandran
Abstract:
Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.Keywords: dry milling, tensile testing, wet milling, 6xxx alloy
Procedia PDF Downloads 19811713 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
Authors: Carlos Caro, Ernest Blade, Nestor Rojas
Abstract:
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model
Procedia PDF Downloads 52211712 An excessive Screen Time of High School Students in Their Free Time Promotes Our Young People’s Risk of Obesity
Authors: Susana Aldaba Yaben, Marga Echauri Ozcoidi, Rosario Osinaga Cenoz
Abstract:
It was decided to make a diagnosis with students of Berriozar High School between 12 and 15 years (both included) for their lifestyles in relation to eating habits, BMI (Body Mass Index), physical activity, drugs, interpersonal relationships and screen time. The aim of this survey is identifying needs of this population and depending on the results, we could program socio-educational activities. This action is part of the Community Health Promotion Programme and healthy lifestyles in childhood and youth of Berriozar. The eating habits, a lack of physical activity and an excessive screen time are causes of 26,75% of obese or overweight young people. First of all, many of them have got a diet enriched in saturated fats and sugars. Secondly, most of them do not practise physical exercise daily and finally, their screen time are higher than the recommendation (until 2 hours a day).Keywords: lifestyle, diet, BMI, physical activity, screen time, education, youth
Procedia PDF Downloads 57211711 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology
Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit
Abstract:
Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement
Procedia PDF Downloads 39611710 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves
Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour
Abstract:
The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.Keywords: oil, viscosity, moisture, ultrasonic waves
Procedia PDF Downloads 58111709 Prevalence of Fast-Food Consumption on Overweight or Obesity on Employees (Age Between 25-45 Years) in Private Sector; A Cross-Sectional Study in Colombo, Sri Lanka
Authors: Arosha Rashmi De Silva, Ananda Chandrasekara
Abstract:
This study seeks to comprehensively examine the influence of fast-food consumption and physical activity levels on the body weight of young employees within the private sector of Sri Lanka. The escalating popularity of fast food has raised concerns about its nutritional content and associated health ramifications. To investigate this phenomenon, a cohort of 100 individuals aged between 25 and 45, employed in Sri Lanka's private sector, participated in this research. These participants provided socio-demographic data through a standardized questionnaire, enabling the characterization of their backgrounds. Additionally, participants disclosed their frequency of fast-food consumption and engagement in physical activities, utilizing validated assessment tools. The collected data was meticulously compiled into an Excel spreadsheet and subjected to rigorous statistical analysis. Descriptive statistics, such as percentages and proportions, were employed to delineate the body weight status of the participants. Employing chi-square tests, our study identified significant associations between fast-food consumption, levels of physical activity, and body weight categories. Furthermore, through binary logistic regression analysis, potential risk factors contributing to overweight and obesity within the young employee cohort were elucidated. Our findings revealed a disconcerting trend, with 6% of participants classified as underweight, 32% within the normal weight range, and a substantial 62% categorized as overweight or obese. These outcomes underscore the alarming prevalence of overweight and obesity among young private-sector employees, particularly within the bustling urban landscape of Colombo, Sri Lanka. The data strongly imply a robust correlation between fast-food consumption, sedentary behaviors, and higher body weight categories, reflective of the evolving lifestyle patterns associated with the nation's economic growth. This study emphasizes the urgent need for effective interventions to counter the detrimental effects of fast-food consumption. The implementation of awareness campaigns elucidating the adverse health consequences of fast food, coupled with comprehensive nutritional education, can empower individuals to make informed dietary choices. Workplace interventions, including the provision of healthier meal alternatives and the facilitation of physical activity opportunities, are essential in fostering a healthier workforce and mitigating the escalating burden of overweight and obesity in Sri LankaKeywords: fast food consumption, obese, overweight, physical activity level
Procedia PDF Downloads 5011708 Effects of Physical Activity on the Association of CETP Gene with HDL Cholesterol Levels in Korean Population
Authors: Jae Woong Sull, Sun Ha Jee
Abstract:
High-density lipoprotein (HDL) cholesterol levels are associated with decreased risk of coronary artery disease. Several genome-wide association studies (GWAS) for HDL cholesterol levels have implicated cholesterol ester transfer protein (CETP) as possibly causal. We tested for the association between single nucleotide polymorphisms (SNPs) in CETP gene and HDL cholesterol levels in Korean population. Subjects were selected from the Korean Metabolic Syndrome Research Initiative study in the Bundang-Gu area. A total of 2,304 individuals from Bundang-Gu were recruited in 2008. Other subjects were selected from the Severance Hospital (N=4,294). SNP rs6499861 in the CETP gene was associated with mean HDL cholesterol levels (effect per allele -2.044 mg/dL, p=7.23×10-7). Subjects with the CG/GG genotype had a 1.46 -fold (range 1.24–1.72-fold) higher risk of having abnormal HDL cholesterol levels (<40 mg/dL) than subjects with the CC genotype. When analyzed by gender, the association of CETP was stronger in women than in men. When analyzed by physical activity behavior, the association with CETP was much stronger in male subjects with low physical activity (OR=1.54, 95% CI: 1.23-1.92, P=0.0001) than in male subjects with high physical activity. This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.Keywords: CETP, HDL cholesterol, physical activity, polymorphisms
Procedia PDF Downloads 28611707 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers
Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz
Abstract:
In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber
Procedia PDF Downloads 29711706 Experimental Study of Different Types of Concrete in Uniaxial Compression Test
Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh
Abstract:
Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.Keywords: polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain
Procedia PDF Downloads 39411705 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene
Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi
Abstract:
Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property
Procedia PDF Downloads 21311704 The Influence of Training on the Special Aerial Gymnastics Instruments on Selected C-Reactive Proteins in Cadets’ Serum
Authors: Z. Wochyński, K. A. Sobiech, Z. Kobos
Abstract:
To C-Reactive Proteins include ferritin, transferrin, and ceruloplasmin- metalloproteins. The study aimed at assessing an effect of training on the Special Aerial Gymnastics Instruments (SAGI) on changes of serum ferritin, transferrin, and ceruloplasmin and cadets’ physical fitness in comparison with a control group. Fifty-five cadets in the mean age 20 years were included into this study. They were divided into two groups: Group A (N=41) trained on SAGI and Group B (N=14) trained according the standard program of physical education (control group). In both groups, blood was a material for assays. Samples were collected twice before and after training at the start of the program (training I), during (training II), and after education program completion (training III). Commercially available kits were used to assay blood serum ferritin, transferrin, and ceruloplasmin. Cadets’ physical fitness was evaluated with exercise tests before and after education program completion. In Group A, serum post-exercise ferritin decreased statistically insignificantly in training I and II and increased in training III in comparison with pre-exercise values. In Group B, post-exercise serum ferritin decreased statistically insignificantly in training I and III and significantly increased in training II in comparison with the pre-exercise values. In Group A, serum transferrin decreased statistically insignificantly in training I, and significantly increased in training II, whereas in training III it increased insignificantly in comparison with pre-exercise values. In Group B, post-exercise serum transferrin increased statistically significantly in training I, II, and III in comparison with pre-exercise values. I n Group A, serum ceruloplasmin decreased in all three series in comparison with pre-exercise values. In Group B, serum ceruloplasmin increased significantly in training II. It was showed that the training on SAGI significantly decreased serum ceruloplasmin in Group A in all three series of assays and did not produce significant changes in serum ferritin also was showed significant increase in serum transferrin.Keywords: special aerial gymnastics instruments, ferritin, ceruloplasmin, transferrin
Procedia PDF Downloads 46311703 Modeling and Computational Validation of Dispersion Curves of Guide Waves in a Pipe Using ANSYS
Authors: A. Perdomo, J. R. Bacca, Q. E. Jabid
Abstract:
In recent years, technological and investigative progress has been achieved in the area of monitoring of equipment and installation as a result of a deeper understanding of physical phenomenon associated with the non-destructive tests (NDT). The modal analysis proposes an efficient solution to determine the dispersion curves of an arbitrary waveguide cross-sectional. Dispersion curves are essential in the discontinuity localization based on guided waves. In this work, an isotropic hollow cylinder is dynamically analyzed in ANSYS to obtain resonant frequencies and mode shapes all of them associated with the dispersion curves. The numerical results provide the relation between frequency and wavelength which is the foundation of the dispersion curves. Results of the simulation process are validated with the software GUIGW.Keywords: ansys APDL, dispersion curves, guide waves, modal analysis
Procedia PDF Downloads 25311702 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste
Authors: Maciej Szelag
Abstract:
The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS
Procedia PDF Downloads 35611701 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems
Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell
Abstract:
This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.Keywords: cold formed steel joists, composite action, flooring systems, shear connection
Procedia PDF Downloads 12911700 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061
Authors: M. Ghosh, A. Miroux, L. A. I. Kestens
Abstract:
At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.Keywords: AA 6061, deformation, temperature, tensile, PSC, texture
Procedia PDF Downloads 48411699 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties
Authors: C. H. S. Vidyasagar, D. B. Karunakar
Abstract:
In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.Keywords: mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation
Procedia PDF Downloads 15211698 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap
Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi
Abstract:
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound
Procedia PDF Downloads 7811697 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites
Authors: Hamed Khezrzadeh
Abstract:
Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.Keywords: fractal geometry, homogenization, micromehcanics, particulate composites
Procedia PDF Downloads 29211696 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 601