Search results for: multi-temporal image classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4557

Search results for: multi-temporal image classification

3627 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
3626 Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry

Authors: Yongseok Kwon, Woowon Jeong, Eunjin Cho, Sangkug Chung, Kyehan Rhee

Abstract:

Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement.

Keywords: oscillating bubble, particle image velocimetry, microstreaming, vortices,

Procedia PDF Downloads 413
3625 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 234
3624 Comparison of Radiation Dosage and Image Quality: Digital Breast Tomosynthesis vs. Full-Field Digital Mammography

Authors: Okhee Woo

Abstract:

Purpose: With increasing concern of individual radiation exposure doses, studies analyzing radiation dosage in breast imaging modalities are required. Aim of this study is to compare radiation dosage and image quality between digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM). Methods and Materials: 303 patients (mean age 52.1 years) who studied DBT and FFDM were retrospectively reviewed. Radiation dosage data were obtained by radiation dosage scoring and monitoring program: Radimetrics (Bayer HealthCare, Whippany, NJ). Entrance dose and mean glandular doses in each breast were obtained in both imaging modalities. To compare the image quality of DBT with two-dimensional synthesized mammogram (2DSM) and FFDM, 5-point scoring of lesion clarity was assessed and the better modality between the two was selected. Interobserver performance was compared with kappa values and diagnostic accuracy was compared using McNemar test. The parameters of radiation dosages (entrance dose, mean glandular dose) and image quality were compared between two modalities by using paired t-test and Wilcoxon rank sum test. Results: For entrance dose and mean glandular doses for each breasts, DBT had lower values compared with FFDM (p-value < 0.0001). Diagnostic accuracy did not have statistical difference, but lesion clarity score was higher in DBT with 2DSM and DBT was chosen as a better modality compared with FFDM. Conclusion: DBT showed lower radiation entrance dose and also lower mean glandular doses to both breasts compared with FFDM. Also, DBT with 2DSM had better image quality than FFDM with similar diagnostic accuracy, suggesting that DBT may have a potential to be performed as an alternative to FFDM.

Keywords: radiation dose, DBT, digital mammography, image quality

Procedia PDF Downloads 349
3623 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE

Authors: Parimalah Velo, Ahmad Zakaria

Abstract:

Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.

Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging

Procedia PDF Downloads 271
3622 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
3621 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
3620 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
3619 Detecting the Blood of Femoral and Carotid Artery of Swine Using Photoacoustic Tomography in-vivo

Authors: M. Y. Lee, S. H. Park, S. M. Yu, H. S. Jo, C. G. Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging with ultrasound. It also provides the high contrast and resolution due to optical and ultrasound imaging, respectively. For these reasons, many studies take experiment in order to apply this method for many diagnoses. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer. In this study, we conduct the experiment using swine and detect the blood of carotid artery and femoral artery. We measured the blood of femoral and carotid artery of swine and reconstructed the image using 950nm due to the HbO₂ absorption coefficient. The photoacoustic image is overlaid with ultrasound image in order to match the position. In blood of artery, major composition of blood is HbO₂. In this result, we can measure the blood of artery.

Keywords: photoacoustic tomography, swine artery, carotid artery, femoral artery

Procedia PDF Downloads 251
3618 Challenges for Tourism Development in Algeria: Perspectives of Algerian Tourism Suppliers

Authors: Nour-Elhouda Lecheheb

Abstract:

Despite substantial tourism potentials, the Algerian tourism industry has faced a number of challenges, including the government heavy dependence on the energy sector, negative perception in the West, and a lack of effective resource management and marketing. This paper attempts to discuss the challenges hindering the development of the Algerian tourism industry from the perspective of the official tourism suppliers in Algeria both in the public and private sectors. A total of 10 semi-structured interviews were conducted during a field-trip to Algiers, Algeria, in September 2019. From the analysis of the interviews, it is evident that the Algerian tourism suppliers face a number of challenges mainly the country’s negative image in the West and a significant lack of political and financial support to contest this negative image effectively and sufficiently.

Keywords: Algerian tourism, destination development, destination image, tourism suppliers

Procedia PDF Downloads 258
3617 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection

Procedia PDF Downloads 310
3616 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation

Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu

Abstract:

Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.

Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator

Procedia PDF Downloads 256
3615 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 214
3614 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT

Authors: Jae Ni Jang, Young Uk Kim

Abstract:

Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.

Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT

Procedia PDF Downloads 47
3613 Fathers and Daughters: Their Relationship and Its Impact on Body Image and Mental Health

Authors: John Toussaint

Abstract:

Objective: Our society is suffering from an epidemic of body image dissatisfaction, and related disorders appear to be increasing globally for children. There is much to indicate that children's body image and eating attitudes are being affected negatively by socio-cultural factors such as parents, peers and media. Most studies and theories, however, have focused extensively on the daughter-mother relationship. Very few studies have investigated the role of attachment to the father as an important factor in the development of girls’ and women’s attitudes towards themselves and their bodies. Recently, data have shown that the father’s parenting style, as well as the quality of the relationship with him is crucial for the understanding of the development and persistence of body image disorders. This presentation is based on samples of participants with self-defined body image dissatisfaction, and the self-reported measures of their fathers’ parental behaviours, emotional warmth, support, or protection. Attachment theory does offer support in exploring these relationships and it is used in this presentation to assist in understanding the relationship between the father and his daughter in relation to body image and mental health. Clinical implications are also offered in respect to work with body image, eating disorders and relational therapy. Methods: As awareness of the increasing frequency of body image concerns in children grows, so too does the need for a simple, valid and reliable measure of body image. The Children's Body Image Scale (CBIS) designed in Australia, depicts seven male and females figures from which children are to choose their perceived body type and ideal body type. This was compared with a range of international body mass index (BMI) reference standards. These measures together with individual one-on-one interviews were completed by 158 children aged 7-12 years. Results: A high frequency of body image dissatisfaction was indicated in the children's responses. 55% of girls and 41% of boys said they would like to be thinner, and wished for an ideal BMI figure below the 10th percentile. This is an unhealthy and unattainable level of body fatness for the majority of children when considered in relation to the reported secular trend of their increasing average body size. Thin children were generally ranked as best and perceived as kind, happy, academically skilled, and socially successful. Fat children were perceived as unintelligent, lazy, greedy, unpopular, and unable to play physical games. Conclusions: Body image ideals and fat stereotypes are well entrenched among children. There is much to indicate that children's body image and eating attitudes are being affected negatively by sociocultural factors such as parents, peers and media. Teachers and health professionals could promote intervention programs for children involving knowledge and acceptance of genetic influences on body type; the dangerous effects of weight loss dieting; the importance of physical activity and eating healthy; and scepticism and critical analysis of mass media messages.

Keywords: body image, father attachment, mental health, eating disorders

Procedia PDF Downloads 260
3612 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 96
3611 Media Representation of China: A Content Analysis of Coverage of China-Related Energy in the New York Times

Authors: Lian Liu

Abstract:

By analyzing the content of the New York Times' China-related energy reports, this study aims to explore the construction of China's national image by the mainstream media in the United States. The study analyzes three aspects of the coverage: topics, reporting tendencies, and countries involved. The results of the study show that economic issues are the main focus of the New York Times’ China-related energy coverage, followed by political issues and environmental issues. Overall, the coverage tendency was mainly negative, but positive coverage was dominated by science and technology issues. In addition, the study found that U.S.-China relations and Sino-Russian relations were important contexts for the construction of China's national image in the NYT's China-related energy coverage. These stories highlight China's interstate interactions with the United States, Japan, and Russia, which serve as important links in the coverage. The findings of this study reveal some characteristics and trends of the U.S. mainstream media's country image of China, which are important for a deeper understanding of the U.S.-China relationship and the media's influence on the construction of the country's image.

Keywords: media coverage, China, content analysis, visualization technology

Procedia PDF Downloads 87
3610 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications

Authors: Eva Tsouparopoulou, Maria Symeonaki

Abstract:

The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.

Keywords: non-response, refusals, European social survey, classification

Procedia PDF Downloads 85
3609 “The Day I Became a Woman” by Marziyeh Meshkiny: An Analysis of the Cinematographic Image of the Middle East

Authors: Ana Carolina Domingues

Abstract:

This work presents the preliminary results of the above-titled doctoral research. Based on this film and on Middle East authors who discuss films made by women, it has been concluded so far, that it is part of a larger movement, which together with other productions, show the perceptions of the world of these women, who see the world otherwise, for not holding positions of power. These modes of perception revealed from the encounter of women with the cameras, educate viewers to denaturalize the impressions constructed in relation to the Middle East.

Keywords: cinema, image, middle east, women

Procedia PDF Downloads 117
3608 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis

Authors: R. Rama Kishore, Sunesh

Abstract:

This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.

Keywords: digital watermarking, discreate cosine transform, chaotic grid map, entropy

Procedia PDF Downloads 253
3607 Corporate Social Responsibility Initiatives in COVID-19: The Effect of CSR Motives Attributions on Advocacy

Authors: Tengku Ezni Balqiah, Fanny Martdianty, Rifelly Dewi Astuti, Mutia Nurazizah Rachmawati

Abstract:

The Corona Disease 2019 (COVID-19) pandemic has changed the world considerably and has disrupted businesses and people’s lives globally. In response to the pandemic, businesses have seen increased demand for corporate social responsibility (CSR). Businesses can increase their investments in CSR initiatives during the pandemic through various actions. This study examines how the various motives of philanthropy CSR influence perceived quality of life, company image, and advocacy. This study employed surveys of 719 respondents from seven provinces in Indonesia that had the highest number of COVID-19 cases in the country. A structural equation model was used to test the hypothesis. The results showed that value and strategic motives positively influenced the perceived quality of life and corporate image, while the egoistic motive was negatively associated with both the perceived quality of life and the image of the company. The study also suggested that advocacy was strongly related to the perceived quality of life instead of a corporate image. The results indicate that, during a pandemic, both public- (i.e. value) and firm-serving (i.e. strategic) motives can have the same impact as long as people perceive that the businesses are sincere.

Keywords: advocacy, COVID 19, CSR motive, Indonesia, quality of life

Procedia PDF Downloads 134
3606 Assessing the Applicability of Kevin Lynch’s Framework of ‘the Image of the City’ in the Case of a Walled City of Jaipur

Authors: Jay Patel

Abstract:

This Research is about investigating the ‘image’ of the city, and asks whether this ‘image’ holds any significance that can be changed. Kevin Lynch in the book ‘The image of the city’ develops a framework that breaks down the city’s image into five physical elements. These elements (Paths, Edge, Nodes, Districts, and Landmarks), according to Lynch assess the legibility of the urbanscapes, that emerged from his perception-based study in 3 different cities (New Jersey, Los Angeles, and Boston) in the USA. The aim of this research is to investigate whether Lynch’s framework can be applied within an Indian context or not. If so, what are the possibilities and whether the imageability of Indian cities can be depicted through the Lynch’s physical elements or it demands an extension to the framework by either adding or subtracting a physical attribute. For this research project, the walled city of Jaipur was selected, as it is considered one of the futuristic designed cities of all time in India. The other significant reason for choosing Jaipur was that it is a historically planned city with solid historical, touristic and local importance; allowing an opportunity to understand the application of Lynch's elements to the city's image. In other words, it provides an opportunity to examine how the disadvantages of a city's implicit programme (its relics of bygone eras) can be converted into assets by improving the imageability of the city. To obtain data, a structured semi-open ended interview method was chosen. The reason for selecting this method explicitly was to gain qualitative data from the users rather than collecting quantitative data from closed-ended questions. This allowed in-depth understanding and applicability of Kevin Lynch’s framework while assessing what needs to be added. The interviews were conducted in Jaipur that yielded varied inferences that were different from the expected learning outcomes, highlighting the need for extension on Lynch’s physical elements to achieve city’s image. Whilst analyzing the data, there were few attributes found that defined the image of Jaipur. These were categorized into two: a Physical aspect (streets and arcade entities, natural features, temples and temporary/ informal activities) and Associational aspects (History, Culture and Tradition, Medium of help in wayfinding, and intangible aspects).

Keywords: imageability, Kevin Lynch, people’s perception, assessment, associational aspects, physical aspects

Procedia PDF Downloads 198
3605 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image

Authors: Salah Abdul Hameed Saleh, Ghada Hasan

Abstract:

The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.

Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area

Procedia PDF Downloads 442
3604 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
3603 Brand Extension and Customer WOM: Evidence from the Sports Industry

Authors: Jim Shih-Chiao Chin, Yu Ting Yeh, Shui Lien Chen, Yi-Fen Tsai

Abstract:

his study is taking Adidas Company as the object, explored the brand awareness directly or indirectly affects brand affect and word of mouth. First, explored the brand awareness on category fit and image fit, and examined the influence of category fit and image fit on extension attitude. This study then designates the effect of extension attitude on brand affect and word-of-mouth. The relationship of brand awareness on brand affect and word-of-mouth was also explored. The study participants are people who have purchased Adidas extension products. A total of 700 valid questionnaires were collected and statistical software AMOS 20.0 was used to examine the research hypotheses by using structural equation modeling (SEM). Finally, theoretical implications and research directions are provided for future studies.

Keywords: brand extension, brand awareness, product category fit, brand image fit, brand affect, word-of-mouth (WOM)

Procedia PDF Downloads 332
3602 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
3601 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 76
3600 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 380
3599 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique

Authors: Mohammad A. Khasawneh

Abstract:

Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure. The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab. Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.

Keywords: friction, image analysis, polishing, statistical analysis, texture

Procedia PDF Downloads 306
3598 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 48