Search results for: models of innovation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8327

Search results for: models of innovation

7397 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 110
7396 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture

Authors: Kimberly Samaha

Abstract:

The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.

Keywords: bio-economy, biomass energy, financing, zero-waste

Procedia PDF Downloads 134
7395 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
7394 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 236
7393 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 146
7392 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
7391 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112
7390 Intellectual Capital as Resource Based Business Strategy

Authors: Vidya Nimkar Tayade

Abstract:

Introduction: Intellectual capital of an organization is a key factor to success. Many companies invest a huge amount in their Research and development activities. Any innovation is helpful not only to that particular company but also to many other companies, industry and mankind as a whole. Companies undertake innovative changes for increasing their capital profitability and indirectly increase in pay packages of their employees. The quality of human capital can also improve due to such positive changes. Employees become more skilled and experienced due to such innovations and inventions. For increasing intangible capital, the author has referred to a couple of books and referred case studies to come to a conclusion. Different charts and tables are also referred to by the author. Case studies are more important because they are proven and established techniques. They enable students to apply theoretical concepts in real-world situations. It gives solutions to an open-ended problem with multiple potential solutions. There are three different strategies for undertaking intellectual capital increase. They are: Research push strategy/ Technology pushed approach, Market pull strategy/ approach and Open innovation strategy/approach. Research push strategy, In this strategy, research is undertaken and innovation is achieved on its own. After invention inventor company protects such invention and finds buyers for such invention. In this way, the invention is pushed into the market. In this method, research and development are undertaken first and the outcome of this research is commercialized. Market pull strategy, In this strategy, commercial opportunities are identified first and our research is concentrated in that particular area. For solving a particular problem, research is undertaken. It becomes easier to commercialize this type of invention. Because what is the problem is identified first and in that direction, research and development activities are carried on. Open invention strategy, In this type of research, more than one company enters into an agreement of research. The benefits of the outcome of this research will be shared by both companies. Internal and external ideas and technologies are involved. These ideas are coordinated and then they are commercialized. Due to globalization, people from the outside company are also invited to undertake research and development activities. Remuneration of employees of both the companies can increase and the benefit of commercialization of such invention is also shared by both the companies. Conclusion: In modern days, not only can tangible assets be commercialized, but also intangible assets can also be commercialized. The benefits of such an invention can be shared by more than one company. Competition can become more meaningful. Pay packages of employees can improve. It Is a need for time to adopt such strategies to benefit employees, competitors, stakeholders.

Keywords: innovation, protection, management, commercialization

Procedia PDF Downloads 168
7389 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 393
7388 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
7387 Measurement of CES Production Functions Considering Energy as an Input

Authors: Donglan Zha, Jiansong Si

Abstract:

Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.

Keywords: bias of technical change, CES production function, elasticity of substitution, energy input

Procedia PDF Downloads 282
7386 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
7385 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
7384 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 439
7383 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
7382 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 140
7381 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334
7380 Vernacular Façade for Energy Conservation: Mashrabiya, A Reminiscent of Arab-Islamic Architecture

Authors: Balpreet Singh Madan

Abstract:

The Middle Eastern countries have preserved their heritage, tradition, and culture in their buildings by incorporating vernacular features of Arab-Islamic Architecture. The harsh sun and arid climate in the Gulf region make their buildings and infrastructure extremely hot and challenging to live in. One such iconic feature of Arab architecture is the Mashrabiya, which has been refined and updated for both functional and aesthetic purposes. This feature helps reduce the impact of solar radiation in buildings and lowers the energy requirements for creating livable conditions. The incorporation of Mashrabiya in modern buildings in the region symbolizes the amalgamation of tradition with innovation and modern technology. These buildings depict Mashrabiya with refinements for its better functional performance and aesthetic appeal to make superior built forms. This paper emphasizes the study of Mashrabiya as a vernacular feature with its adaptability for Energy Conservation and Sustainability, as seen in some of the recent iconic buildings of the Middle East, through a literature review and case studies of renowned buildings.

Keywords: energy efficiency, climate responsive, sustainability, innovation, heritage, vernacular

Procedia PDF Downloads 102
7379 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
7378 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
7377 Investigating the Key Success Factors of Supplier Collaboration Governance in the Aerospace Industry

Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz

Abstract:

In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Governance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the collaboration process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with suppliers in the European aerospace industry With these ideas in mind, we present research is twofold: Understand the importance of governance as a key element of the success of the collaboration in the development of product and process innovations, Establish the mechanisms and procedures to ensure the proper management of the processes of collaboration. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new products and processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain.

Keywords: supplier collaboration, supplier relationship governance, innovation management, product innovation, process innovation

Procedia PDF Downloads 459
7376 Start-Up: The Perception of Brazilian Entrepreneurs about the Start-Up Brasil Program

Authors: Fernando Nobre Cavalcante

Abstract:

In Brazil, and more recently in the city of Fortaleza, there is a new form of entrepreneurship that is focused on the information and communication technology service sector and that draws the attention of young people, investors, governments, authors and media companies: it is known as the start-up movement. Today, it is considered to be a driving force behind the creative economy. Rooted on progressive discourse, the words enterprise and innovation seduce new economic agents motivated by success stories from Silicon Valley in America along with increasing commercial activity for digital goods and services. This article assesses, from a sociological point of view, the new productive wave problematized by the light of Manuel Castells’ informational capitalism. Considering the skeptical as well as the optimistic opinions about the impact of this new entrepreneurial rearrangement, the following question is asked: How Brazilian entrepreneurs evaluate public policy incentives for startups Brazilian Federal Government? The raised hypotheses are based on employability factors as well as cultural, economical, and political matters related to innovation and technology. This study has produced a nationwide quantitative assessment with a special focus on the reality of these Ceará firms; as well as comparative qualitative interviews on Brazilian experiences lived by identified agents. This article outlines the public incentive policy of the federal government, the Start-up Brasil Program, from the perspective of these companies and provides details as to the discipline methods of the new enterprising way born in the United States. The startups are very young companies that are headed towards the economic sustainment of the productive sector services. These companies are dropping the seeds that will produce the re-enchantment of young people and bring them back to participation in political debate; they provide relief and reheats the job market; and they produce a democratization of the entrepreneurial ‘Do-It-Yourself’ culture. They capitalize the pivot of the wall street wolves and of agents being charged for new masks. There are developmental logic’s prophylaxis in the face of dreadful innovation stagnation. The lack of continuity in Brazilian governmental politics and cultural nuances related to entrepreneurship are barring the desired regional success of this ecosystem.

Keywords: creative economy, entrepreneurship, informationalism, innovation, startups, start-up brasil program

Procedia PDF Downloads 368
7375 An Innovative Interaction Approach on Agricultural Community Revitalization: A Case Study of Wufeng Living Lab for Creative Agricultural

Authors: Shih-Jen Feng, Nai-Chia Chao, Meng-Chi Shih, Chien-Chi Chang

Abstract:

Today, Taiwan agriculture operates under small business scale with economic insufficiency, due to aging population, unproductiveness, inadequate systematic management, insufficient agro-economic scale, and cultivation on agro-education. Moreover, because of farming special working method (physical tiring, shackled weather condition), environment (asymmetric distribution information), hours devoted (unbalance wealth), the willingness for younger generation to delicate into agriculture farming is rare. Although government had provided policies to harmonize the existing problem, significant result is unseen. Living lab (LL) is a methodology approach to sense, prototype and validate complex solutions in real life context. This paper contributes an innovative interaction methodology by probing under implementation of diverse LL sector merging big data analysis utilizing rural redevelopment and revitalization plan of Wufeng.

Keywords: living lab approach, historic rural redevelopment, innovation model, innovation approach

Procedia PDF Downloads 271
7374 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 418
7373 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
7372 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing

Procedia PDF Downloads 358
7371 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 151
7370 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
7369 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
7368 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355