Search results for: metal sheet defect
2322 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite
Authors: A. M. Ahmed, Mona A. Darwish
Abstract:
Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.Keywords: waste water, nickel, bentonite, adsorption
Procedia PDF Downloads 2582321 Understanding the Common Antibiotic and Heavy Metal Resistant-Bacterial Load in the Textile Industrial Effluents
Authors: Afroza Parvin, Md. Mahmudul Hasan, Md. Rokunozzaman, Papon Debnath
Abstract:
The effluents of textile industries have considerable amounts of heavy metals, causing potential microbial metal loads if discharged into the environment without treatment. Aim: In this present study, both lactose and non-lactose fermenting bacterial isolates were isolated from textile industrial effluents of a specific region of Bangladesh, named Savar, to compare and understand the load of heavy metals in these microorganisms determining the effects of heavy metal resistance properties on antibiotic resistance. Methods: Five different textile industrial canals of Savar were selected, and effluent samples were collected in 2016 between June to August. Total bacterial colony (TBC) was counted for day 1 to day 5 for 10-6 dilution of samples to 10-10 dilution. All the isolates were isolated and selected using 4 differential media, and tested for the determination of minimum inhibitory concentration (MIC) of heavy metals and antibiotic susceptibility test with plate assay method and modified Kirby-Bauer disc diffusion method, respectively. To detect the combined effect of heavy metals and antibiotics, a binary exposure experiment was performed, and to understand the plasmid profiling plasmid DNA was extracted by alkaline lysis method of some selective isolates. Results: Most of the cases, the colony forming units (CFU) per plate for 50 ul diluted sample were uncountable at 10-6 dilution, however, countable for 10-10 dilution and it didn’t vary much from canal to canal. A total of 50 Shigella, 50 Salmonella, and 100 E.coli (Escherichia coli) like bacterial isolates were selected for this study where the MIC was less than or equal to 0.6 mM for 100% Shigella and Salmonella like isolates, however, only 3% E. coli like isolates had the same MIC for nickel (Ni). The MIC for chromium (Cr) was less than or equal to 2.0 mM for 16% Shigella, 20% Salmonella, and 17% E. coli like isolates. Around 60% of both Shigella and Salmonella, but only 20% of E.coli like isolates had a MIC of less than or equal to 1.2 mM for lead (Pb). The most prevalent resistant pattern for azithromycin (AZM) for Shigella and Salmonella like isolates was found 38% and 48%, respectively; however, for E.coli like isolates, the highest pattern (36%) was found for sulfamethoxazole-trimethoprim (SXT). In the binary exposure experiment, antibiotic zone of inhibition was mostly increased in the presence of heavy metals for all types of isolates. The highest sized plasmid was found 21 Kb and 14 Kb for lactose and non-lactose fermenting isolates, respectively. Conclusion: Microbial resistance to antibiotics and metal ions, has potential health hazards because these traits are generally associated with transmissible plasmids. Microorganisms resistant to antibiotics and tolerant to metals appear as a result of exposure to metal-contaminated environments.Keywords: antibiotics, effluents, heavy metals, minimum inhibitory concentration, resistance
Procedia PDF Downloads 3152320 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman
Abstract:
This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters
Procedia PDF Downloads 4322319 In situ One-Step Synthesis of Graphene Quantum Dots-Metal Free and Zinc Phthalocyanines Conjugates: Investigation of Photophysicochemical Properties
Authors: G. Fomo, O. J. Achadu, T. Nyokong
Abstract:
Nanoconjugates of graphene quantum dots (GQDs) and 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyanine (H₂Pc(OPyF₃)₄) or 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyaninato) zinc (II) (ZnPc(OPyF₃)₄) were synthesized via a novel in situ one-step route. The bottom-up approach for the prepared conjugates could ensure the intercalation of the phthalocyanines (Pcs) directly onto the edges or surface of the GQDs and or non-covalent coordination using the π-electron systems of both materials. The as-synthesized GQDs and their Pcs conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. The singlet oxygen quantum yields of the Pcs in the presence of GQDs were enhanced due to Förster resonance energy transfer (FRET) occurrence within the conjugated hybrids. Hence, these nanoconjugates are potential materials for photodynamic therapy (PDT) and photocatalysis applications.Keywords: graphene quantum dots, metal free fluorinated phthalocyanine, zinc fluorinated phthalocyanine, photophysicochemical properties
Procedia PDF Downloads 1822318 Preparation of Ternary Metal Oxide Aerogel Catalysts for Carbon Dioxide and Propylene Oxide Cycloaddition Reaction
Abstract:
CO2 is the primary greenhouse gas which causes global warming in recent years. As the carbon capture and storage (CCS) getting maturing, the reuse of carbon dioxide which made from CCS is the important issue. In this way, the most common method is the synthesis of cyclic carbonate chemicals from the cycloaddition reaction of carbon dioxide and epoxide. The catalyst plays an important role in the CO2/epoxide cycloaddition reactions. The Lewis acid and base sites are both needed on the catalyst surface for the help of epoxide ring opening, leading to the synthesis of cyclic carbonate. Furthermore, the larger specific surface area and more active site of the catalyst are also needed to enhance the efficiency of the CO2/epoxide cycloaddition reactions. Aerogel is a mesoporous nanomaterial (pore size between 2~50 nm) with high specific surface area and porosity (at least 90%) and low density. In this study, the ternary metal oxide aerogels, Mg-doped Al2O3 aerogels, with higher specific surface area and Lewis acid and base sites on the aerogel surface are successfully prepared by using a facile sol-gel reaction. The as-prepared Mg-doped Al2O3 aerogels are also served as heterogenous catalyst for the CO2/propylene- oxide cycloaddition reaction. Compared to the pristine Al2O3 aerogels, the Mg-doped Al2O3 aerogels possessed both Lewis acid and base sites on the surface are able to enhance the efficiency of the CO2/propylene oxide cycloaddition reactions. As a result, the as-prepared Mg-doped Al2O3 aerogels are a promising and novel catalyst for the CO2/epoxide cycloaddition reactions.Keywords: ternary, metal oxide aerogel, CO2 reuse, cycloaddition, propylene oxide
Procedia PDF Downloads 2612317 Magnetic Resonance Imaging in Cochlear Implant Patients without Magnet Removal: A Safe and Effective Workflow Management Program
Authors: Yunhe Chen, Xinyun Liu, Qian Wang, Jianan Li
Abstract:
Background Cochlear implants (CIs) are currently the primary effective treatment for severe or profound sensorineural hearing loss. As China's population ages and the number of young children rises, the demand for MRI for CI patients is expected to increase. Methods Reviewed MRI cases of 25 CI patients between 2015 and 2024, assessed imaging auditory outcomes and adverse reactions. Use the adverse event record sheet and accompanying medication sheet to record follow-up measures. Results Most CI patients undergoing MRI may face risks such as artifacts, pain, redness, swelling, tissue damage, bleeding, and magnet displacement or demagnetization. Twenty-five CI patients in our hospital were reviewed. Seven patient underwent 3.0 T MR, the others underwent 1.5 T MR. The manufacturers are 18 cases in Austria, 5 cases in Australia and 2 cases in Nurotron. Among them, one patient with bilateral CI underwent 1.5 T MR examination after head pressure bandaging, and the left magnet was displaced (CI24RE Series, Australia). This patient underwent surgical replacement of the magnet under general anesthesia. Six days after the operation, the patient's feedback indicated that the performance of the cochlear implant was consistent with the previous results following the reactivation of the external device. Based on the experience of our hospital, we proposed the feasible management scheme of MRI examination procedure for CI patients. This plan should include a module for confirming MRI imaging parameters, informed consent, educational materials for patients, and other safety measures to ensure that patients receive imaging results safely and effectively, implify clinical. Conclusion As indications for both MRI and cochlear implantation expand,the number of MRI studies recommended for patients with cochlear implants will also increase. The process and management scheme proposed in this study can help to obtain imaging results safely and effectively, and reduce clinical stress.Keywords: cochlear implantation, MRI, magnet, displacement
Procedia PDF Downloads 142316 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater
Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega
Abstract:
Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater
Procedia PDF Downloads 1732315 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄
Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas
Abstract:
Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen
Procedia PDF Downloads 1662314 Impact of Anthropogenic Activities on Soil Quality Using the Land Snail Cantareus apertus as Bioindicator of Heavy Metals Accumulation in The Bejaia Region (Northeastern Algeria)
Authors: Benbelil-Tafoughalt Saida, Tababouchet Meriem
Abstract:
The main goal of this study was to investigate the impact of anthropogenic activities on soil quality using the land snail Cantareusapertus as a bioindicator of heavy metal accumulation. Concentrations of cadmium, copper, and zinc were measured in various body organs, viz: viscera and foot of the land snail Cantareusapertus. The snails were collected from two different sites in the Bejaia region (Northeastern Algeria), exposed to different sources of contamination by trace metals. The first sampling site is an urban areas, and the second is characterized by heavy industry, a potential source of soil pollution via heavy metal contamination. The concentrations of heavy metal in all viscera and foot samples were measured using an atomic absorption spectrophotometer. Bioconcentration of the trace metals Cu, Zn, and Cd varied between the viscera and the foot with the viscera having the highest concentration (µgg-1) of all metals than the foots; Cu, 2.03 – 5.8 (Viscera), 0.05 – 3.30 (Foot), Zn, 23.64 – 45.02 (Viscera), 1.87 – 15.15 (Foot) and Cd, 0.36 – 15.26 (Viscera), 0.18 – 13.73 (Foot), which suggest that ingestion may be the main uptake route of these essential metals. On the other hand, the levels of heavy metals varied significantly among the sampling area (P<0.001). in fact, in the foots as well as in the viscera, the concentrations of all studied metals is significantly higher in the snails sampled from sites closest to potential sources of pollution compared to those collected from urban areas characterized by moderate pollution.Keywords: anthropogenic activities, Bioconcentration, Cantareus apertus, trace metals
Procedia PDF Downloads 1792313 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3782312 Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch
Authors: Sadok Aboubakr
Abstract:
The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch.Keywords: stress intensity factor, pressure, Young's modulus, Poisson's ratio, Shear modulus, Longueur du pipeline, the angle of crack, crack length
Procedia PDF Downloads 3612311 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties
Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski
Abstract:
The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide
Procedia PDF Downloads 2002310 Promoting Creative and Critical Thinking in Mathematics
Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz
Abstract:
The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.Keywords: skills, origami rules, active learning, hands-on activities
Procedia PDF Downloads 672309 Graphene Transistors Based Microwave Amplifiers
Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi
Abstract:
Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.Keywords: graphene, microwave FETs, microwave amplifiers, transistors
Procedia PDF Downloads 4932308 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice
Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi
Abstract:
The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature
Procedia PDF Downloads 3432307 How Accountants Can Save the World
Authors: Todd Sayre
Abstract:
The proprietary balance sheet represents equity as the shareholders’ net worth. FASB (1985) codified the proprietary format with the justification that shareholders, like partners and proprietors, owned and had “ownership interests” in the net assets. The results of the hypotheses tests imply that shareholders do not resemble owners nor do they have ownership interests in the net assets. Accordingly, the paper argues that replacing the proprietary format with an entity format in corporate reporting would not only help corporate reports to be more representationally faithful, but would also help people to recognize that are entities onto themselves.Keywords: proprietary theory, entity theory, earned capital approach, corporate governance
Procedia PDF Downloads 222306 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 1732305 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction
Authors: Hicham Idriss
Abstract:
Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic
Procedia PDF Downloads 2532304 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 3242303 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 1932302 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite
Authors: Anuj Suhag, Rahul Dayal
Abstract:
Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement
Procedia PDF Downloads 6572301 Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate
Authors: Takashi Ehara, Takayoshi Nakanishi, Kohei Sasaki, Marina Abe, Hiroshi Abe, Kiyoaki Abe, Ryo Iizaka, Takuya Sato
Abstract:
CuAlO2 thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO2 observed at annealing temperature of 800-950 ºC on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO2 have been observed only at the annealing temperature of 800-850 ºC. At annealing temperature of 850ºC, peaks of other species have been observed beside the CuAlO2 peaks, then, the CuAlO2 peaks disappeared at annealing temperature of 900 °C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 ºC with appearance of broad SiO2 peak. In the present, we ascribe these peaks as metal silicide.Keywords: CuAlO2, silicide, thin Films, transparent conducting oxide
Procedia PDF Downloads 3962300 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs
Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua
Abstract:
Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.Keywords: adsorption, organic dyes, iodine, metal organic frameworks
Procedia PDF Downloads 2762299 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 752298 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria
Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu
Abstract:
Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.Keywords: agriculture, bioaccumulation, heavy metal, plant tissues
Procedia PDF Downloads 3852297 Use of Metamaterials Structures to Reduce the SAR in the Human Head
Authors: Hafawa Messaoudi, Taoufik Aguili
Abstract:
Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.Keywords: EBG, HIS, metamaterials, SAR reduction
Procedia PDF Downloads 5262296 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.Keywords: reinforcement, silicon carbide, fly ash, red mud
Procedia PDF Downloads 1592295 Micro-Study of Dissimilar Welded Materials
Authors: Ezzeddin Anawa, Abdol-Ghane Olabi
Abstract:
The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.
Procedia PDF Downloads 3742294 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom
Authors: Witthaya Mekhum, Waleerak Sittisom
Abstract:
This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.Keywords: occupational health, safety, local wisdom, Rattanakosin
Procedia PDF Downloads 4402293 Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures
Authors: Beatriz Muñiz Cano, J. Ripoll Sau, D. Pacile, P. M. Sheverdyaeva, P. Moras, J. Camarero, R. Miranda, M. Garnica, M. A. Valbuena
Abstract:
Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage.Keywords: angle resolved photoemission spectroscopy, ARPES, graphene, spintronics, spin-orbitronics, 2D materials, transition metal dichalcogenides, TMDCs, TMDs, LEED, STM, quantum materials
Procedia PDF Downloads 79