Search results for: irradiation aging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1197

Search results for: irradiation aging

267 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment

Procedia PDF Downloads 256
266 Adult Child Labour Migration and Elderly Parent Health: Recent Evidence from Indonesian Panel Data

Authors: Alfiah Hasanah, Silvia Mendolia, Oleg Yerokhin

Abstract:

This paper explores the impacts of adult child migration on the health of elderly parents left behind. The maternal and children health are a priority of health-related policy in most low and middle-income country, and so there is lack of evidence on the health of older population particularly in Indonesia. With increasing life expectancy and limited access to social security and social services for the elderly in this country, the consequences of increasing number of out-migration of adult children to parent health are important to investigate. This study use Indonesia Family Life Survey (IFLS), the only large-scale continuing longitudinal socioeconomic and health survey that based on a sample of households representing about 83 percent of the Indonesian population in its first wave. Using four waves of IFLS including the recent wave of 2014, several indicators of the self-rated health status, interviewer-rated health status and days of illness are used to estimate the impact of labour out-migration of adult children on parent health status. Incorporate both individual fixed effects to control for unobservable factors in migrant and non-migrant households and the ordered response of self-rated health, this study apply the ordered logit of “Blow-up and Cluster” (BUC ) estimator. The result shows that labour out-migration of adult children significantly improves the self-rated health status of the elderly parent left behind. Findings of this study are consistent with the view that migration increases family resources and contribute to better health care and nutrition of the family left behind.

Keywords: aging, migration, panel data, self-rated health

Procedia PDF Downloads 325
265 Assessing Renewal Needs of Urban Water Infrastructure Systems: Case Study of Linköping in Sweden

Authors: Eman Hegazy, Stefan Anderberg, Joakim Krook

Abstract:

Urban water infrastructure systems are central to functioning cities. For securing a continuous and efficient supply of the systems services, continuous investment, maintenance, and renewal are needed. Neglecting maintenance and renewal can lead to recurrent breakdown problems as systems age, which makes it more and more difficult to secure efficient long-term supply. Globally, many cities struggle with aging water infrastructure, often due to competing funding priorities. Investment in maintenance and renewal is not prioritized. The problem primarily stems from the challenge of reaping the benefits of investments promptly. The long-term benefits gained from investing in the renewal of water infrastructure may be achievable in the long run, resulting in the oversight of such investments. This leads to a build-up of "renewal debt" for future generations to inherit. Addressing this issue is difficult due to various contributing factors and the complex nature of the systems. The study aims to contribute to an increased understanding of the long-term management challenges of urban water infrastructure, the development of improved maintenance and renewal strategies through the examination of water infrastructure management, and the assessment of the adequacy of the maintenance and renewal in a case study, the city of Linköping, Sweden. Employing a multi-methods approach, this study utilized both qualitative and quantitative methods, including interviews, workshops, and data analysis. The findings of the study provided insights into the current status of the water and sewerage networks in Linkoping, highlighting the risks to ensuring reliable and sustainable water supply and discussing strategies for improving maintenance and renewal.

Keywords: case study, infrastructure management, renewal needs, Sweden, urban water infrastructure

Procedia PDF Downloads 42
264 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 327
263 The Study of Self-Care Regarding to the Valuable Living in Thai Elderly

Authors: Pannathorn Chachvarat, Smarnjit Piromrun

Abstract:

Aging is the reality for the future world. An urgent priority for the development of the elderlies’ quality living is needed. The promotion of quality the elderly to live longer in their dignity and being independence are essential. The objective of this descriptive research was to study the self-care regarding to the valuable living in Thai elderly. The randomized sample was 100 elderly who live in Muang district of Phayao province. The tools included 2 parts; 1) Personal data (gender, age, income, occupation, marital status, living condition and disease), and 2) the self-care regarding to the valuable living questionnaire consisted of 3 domains, physical (21items), spiritual (13 items) and social domain (12 items). The content validity tool was tested the IOC ranged between 0.60 – 1.00 and the reliability test, Cronbach Alpha was 0.82. The research found that; The most participants were female (60 %), Farmer (37%), and underlying disease (65 %). The range of age was 68 years. Overall of the self-care regarding to the valuable living of physical, spiritual and social were at the high level.The highest level of physical activities was self-taking bath twice a day (morning and evening), and slept at least 5-6 hours at night time.The highest level of spirit activities was a good member of the family, contributions to persons in family, good emotion. Additionally were enjoyable, accepting changes in the body such as the dry skin and the blurred vision, accepting the roles and duties in taking care of house and grandchildren, selecting the applicable activities and practice according to religious Buddhateachingfor the happiness and meditated life.The highest of the social activities were the good relationship between other elderlies and family members, happy to help social activities as of their capacity, and being happy to help other people who have problems.

Keywords: self-care, valuable living, elderly, Thai

Procedia PDF Downloads 261
262 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 118
261 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study

Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong

Abstract:

Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.

Keywords: stem cells, regenerative medicine, osteoarthritis, knee

Procedia PDF Downloads 93
260 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms

Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra

Abstract:

Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.

Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms

Procedia PDF Downloads 407
259 Human Lens Metabolome: A Combined LC-MS and NMR Study

Authors: Vadim V. Yanshole, Lyudmila V. Yanshole, Alexey S. Kiryutin, Timofey D. Verkhovod, Yuri P. Tsentalovich

Abstract:

Cataract, or clouding of the eye lens, is the leading cause of vision impairment in the world. The lens tissue have very specific structure: It does not have vascular system, the lens proteins – crystallins – do not turnover throughout lifespan. The protection of lens proteins is provided by the metabolites which diffuse inside the lens from the aqueous humor or synthesized in the lens epithelial layer. Therefore, the study of changes in the metabolite composition of a cataractous lens as compared to a normal lens may elucidate the possible mechanisms of the cataract formation. Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and ion-pairing high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The quantitative content of more than fifty metabolites has been determined in this work for normal aged and cataractous human lenses. The most abundant metabolites in the normal lens are myo-inositol, lactate, creatine, glutathione, glutamate, and glucose. For the majority of metabolites, their levels in the lens cortex and nucleus are similar, with the few exceptions including antioxidants and UV filters: The concentrations of glutathione, ascorbate and NAD in the lens nucleus decrease as compared to the cortex, while the levels of the secondary UV filters formed from primary UV filters in redox processes increase. That confirms that the lens core is metabolically inert, and the metabolic activity in the lens nucleus is mostly restricted by protection from the oxidative stress caused by UV irradiation, UV filter spontaneous decomposition, or other factors. It was found that the metabolomic composition of normal and age-matched cataractous human lenses differ significantly. The content of the most important metabolites – antioxidants, UV filters, and osmolytes – in the cataractous nucleus is at least ten fold lower than in the normal nucleus. One may suppose that the majority of these metabolites are synthesized in the lens epithelial layer, and that age-related cataractogenesis might originate from the dysfunction of the lens epithelial cells. Comprehensive quantitative metabolic profiles of the human eye lens have been acquired for the first time. The obtained data can be used for the analysis of changes in the lens chemical composition occurring with age and with the cataract development.

Keywords: cataract, lens, NMR, LC-MS, metabolome

Procedia PDF Downloads 291
258 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 68
257 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review

Authors: Siddharatha Sharma

Abstract:

With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.

Keywords: fingerprinting, biometrics, human beings, authentication

Procedia PDF Downloads 294
256 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 290
255 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring

Authors: Murtadha Kareem, Oliver Faust

Abstract:

Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.

Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease

Procedia PDF Downloads 140
254 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst

Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš

Abstract:

Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.

Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory

Procedia PDF Downloads 87
253 Viability of EBT3 Film in Small Dimensions to Be Use for in-Vivo Dosimetry in Radiation Therapy

Authors: Abdul Qadir Jangda, Khadija Mariam, Usman Ahmed, Sharib Ahmed

Abstract:

The Gafchromic EBT3 film has the characteristic of high spatial resolution, weak energy dependence and near tissue equivalence which makes them viable to be used for in-vivo dosimetry in External Beam and Brachytherapy applications. The aim of this study is to assess the smallest film dimension that may be feasible for the use in in-vivo dosimetry. To evaluate the viability, the film sizes from 3 x 3 mm to 20 x 20 mm were calibrated with 6 MV Photon and 6 MeV electron beams. The Gafchromic EBT3 (Lot no. A05151201, Make: ISP) film was cut into five different sizes in order to establish the relationship between absorbed dose vs. film dimensions. The film dimension were 3 x 3, 5 x 5, 10 x 10, 15 x 15, and 20 x 20 mm. The films were irradiated on Varian Clinac® 2100C linear accelerator for dose range from 0 to 1000 cGy using PTW solid water phantom. The irradiation was performed as per clinical absolute dose rate calibratin setup, i.e. 100 cm SAD, 5.0 cm depth and field size of 10x10 cm2 and 100 cm SSD, 1.4 cm depth and 15x15 cm2 applicator for photon and electron respectively. The irradiated films were scanned with the landscape orientation and a post development time of 48 hours (minimum). Film scanning accomplished using Epson Expression 10000 XL Flatbed Scanner and quantitative analysis carried out with ImageJ freeware software. Results show that the dose variation with different film dimension ranging from 3 x 3 mm to 20 x 20 mm is very minimal with a maximum standard deviation of 0.0058 in Optical Density for a dose level of 3000 cGy and the the standard deviation increases with the increase in dose level. So the precaution must be taken while using the small dimension films for higher doses. Analysis shows that there is insignificant variation in the absorbed dose with a change in film dimension of EBT3 film. Study concludes that the film dimension upto 3 x 3 mm can safely be used up to a dose level of 3000 cGy without the need of recalibration for particular dimension in use for dosimetric application. However, for higher dose levels, one may need to calibrate the films for a particular dimension in use for higher accuracy. It was also noticed that the crystalline structure of the film got damage at the edges while cutting the film, which can contribute to the wrong dose if the region of interest includes the damage area of the film

Keywords: external beam radiotherapy, film calibration, film dosimetery, in-vivo dosimetery

Procedia PDF Downloads 470
252 Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions

Authors: Zoi Konsoula

Abstract:

Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.

Keywords: antioxidant activity, corn oil, oxidative deterioration, pomegranate

Procedia PDF Downloads 247
251 An Inclusion Project for Deaf Children into a Northern Italy Contest

Authors: G. Tamanza, A. Bossoni

Abstract:

84 deaf students (from primary school to college) and their families participated in this inclusion project in cooperation with numerous institutions in northern Italy (Brescia-Lombardy). Participants were either congenitally deaf or their deafness was related to other pathologies. This research promoted the integration of deaf students as they pass from primary school to high school to college. Learning methods and processes were studied that focused on encour­aging individual autonomy and socialization. The research team and its collaborators included school teachers, speech ther­apists, psychologists and home tutors, as well as teaching assistants, child neuropsychiatrists and other external authorities involved with deaf persons social inclusion programs. Deaf children and their families were supported, in terms of inclusion, and were made aware of the research team that focused on the Bisogni Educativi Speciali (BES or Special Educational Needs) (L.170/2010 - DM 5669/2011). This project included a diagnostic and evaluative phase as well as an operational one. Results demonstrated that deaf children were highly satisfied and confident; academic performance improved and collaboration in school increased. Deaf children felt that they had access to high school and college. Empowerment for the families of deaf children in terms of networking among local services that deal with the deaf also improved while family satisfaction also improved. We found that teachers and those who gave support to deaf children increased their professional skills. Achieving autonomy, instrumental, communicative and relational abilities were also found to be crucial. Project success was determined by temporal continuity, clear theoretical methodology, strong alliance for the project direction and a resilient team response.

Keywords: autonomy, inclusion, skills, well-being

Procedia PDF Downloads 266
250 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 524
249 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime

Authors: Pahirangan Sivapatham, , Esser Barbara

Abstract:

The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.

Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP

Procedia PDF Downloads 160
248 Regeneration Study on the Athens City Center: Transformation of the Historical Triangle to “Low Pollution and Restricted Vehicle Traffic Zone”

Authors: Chondrogianni Dimitra, Yorgos J. Stephanedes

Abstract:

The impact of the economic crisis, coupled with the aging of the city's old core, is reflected in central Athens. Public and private users, residents, employees, visitors desire the quality upgrading of abandoned buildings and public spaces through environmental upgrading and sustainable mobility, and promotion of the international metropolitan character of the city. In the study, a strategy for reshaping the character and function of the historic Athenian triangle is proposed, aiming at its economic, environmental, and social sustainable development through feasible, meaningful, and non-landscaping solutions of low cost and high positive impact. Sustainable mobility is the main principle in re-planning the study area and transforming it into a “Low Pollution and Limited Vehicle Traffic Zone” is the main strategy. Τhe proposed measures include the development of pedestrian mobility networks by expanding the pedestrian roads and limited-traffic routes, of bicycle networks based on the approved Metropolitan Bicycle Route of Athens, of public transportation networks with new lines of electric mini-buses, and of new regulations for vehicle mobility in the historic triangle. In addition, complementary actions are proposed regarding the provision of Wi-Fi on fixed track media, development of applications that facilitate combined travel and provide real-time data, integration of micromobility (roller skates, Segway, Hoverboard), and its enhancement as a flexible means of personal mobility, and development of car-sharing, ride-sharing and dynamic carpooling initiatives.

Keywords: regeneration plans, sustainable mobility, environmental upgrading, athens historical triangle

Procedia PDF Downloads 131
247 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan

Abstract:

It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.

Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic

Procedia PDF Downloads 199
246 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar

Authors: Bengi Hakguder Taze, Sevcan Unluturk

Abstract:

Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.

Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot

Procedia PDF Downloads 116
245 A Resource-Based Understanding of Health and Social Care Regulation

Authors: David P. Horton, Gary Lynch-Wood

Abstract:

Western populations are aging, prone to various lifestyle health problems, and increasing their demand for health and social care services. This demand has created enormous fiscal and regulatory challenges. In response, government institutions have deployed strategies of behavior modification to encourage people to exercise greater personal responsibility over their health and care needs (i.e., welfare responsibilisation). Policy strategies are underpinned by the assumption that people if properly supported, will make better health and lifestyle selections. Not only does this absolve governments of the responsibility for meeting all health and care needs, but it also enables government institutions to assert fiscal control over welfare spending. Looking at the regulation of health and social care in the UK, the authors identify and outline a suite of regulatory tools that are designed to extract and manage the resources of health and social care services users and to encourage them to make (‘better’) use of these resources. This is important for our understanding of how health and social care regulation is responding to ongoing social and economic challenges. It is also important because there has been a failure to systematically examine the relevance of resources for regulation, which is surprising given that resources are crucial to how and whether regulation succeeds or fails. In particular, drawing from the regulatory welfare state concept, the authors analyse the key legal and regulatory changes and mechanisms that have been introduced since the 2008 financial crisis, focusing on critical measures such as the Health and Social Care Act and regulations introduced under the National Health Service Act. The authors show how three types of user resources (i.e., tangible, labor, and data) are being used to assert fiscal control and increase welfare responsibilisation. Amongst other things, the paper concludes that service users have become more than rule followers and targets of behavioral modification; rather, they are producers of resources that regulatory systems have come to rely on.

Keywords: health care, regulation, resources, social care

Procedia PDF Downloads 70
244 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis

Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack

Abstract:

Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).

Keywords: radiolysis, spent fuel, hydrogen, cyclotron

Procedia PDF Downloads 497
243 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation

Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida

Abstract:

Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.

Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy

Procedia PDF Downloads 293
242 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: cyclic compression, cyclic loading, ferrocement, masonry wall, partially reversed cyclic load, retrofitting

Procedia PDF Downloads 214
241 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes

Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien

Abstract:

UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.

Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress

Procedia PDF Downloads 361
240 Batch and Dynamic Investigations on Magnesium Separation by Ion Exchange Adsorption: Performance and Cost Evaluation

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed

Abstract:

Ion exchange adsorption has a long standing history of success for seawater softening and selective ion removal from saline sources. Strong, weak and mixed types ion exchange systems could be designed and optimized for target separation. In this paper, different types of adsorbents comprising zeolite 13X and kaolin, in addition to, poly acrylate/zeolite (AZ), poly acrylate/kaolin (AK) and stand-alone poly acrylate (A) hydrogel types were prepared via microwave (M) and ultrasonic (U) irradiation techniques. They were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The developed adsorbents were evaluated on bench scale level and based on assessment results, a composite bed has been formulated for performance evaluation in pilot scale column investigations. Owing to the hydrogel nature of the partially crosslinked poly acrylate, the developed adsorbents manifested a swelling capacity of about 50 g/g. The pilot trials have been carried out using magnesium enriched Red Seawater to simulate Red Seawater desalination brine. Batch studies indicated varying uptake efficiencies, where Mg adsorption decreases according to the following prepared hydrogel types AU>AM>AKM>AKU>AZM>AZU, being 108, 107, 78, 69, 66 and 63 mg/g, respectively. Composite bed adsorbent tested in the up-flow mode column studies indicated good performance for Mg uptake. For an operating cycle of 12 h, the maximum uptake during the loading cycle approached 92.5-100 mg/g, which is comparable to the performance of some commercial resins. Different regenerants have been explored to maximize regeneration and minimize the quantity of regenerants including 15% NaCl, 0.1 M HCl and sodium carbonate. Best results were obtained by acidified sodium chloride solution. In conclusion, developed cation exchange adsorbents comprising clay or zeolite support indicated adequate performance for Mg recovery under saline environment. Column design operated at the up-flow mode (approaching expanded bed) is appropriate for such type of separation. Preliminary cost indicators for Mg recovery via ion exchange have been developed and analyzed.

Keywords: batch and dynamic magnesium separation, seawater, polyacrylate hydrogel, cost evaluation

Procedia PDF Downloads 116
239 Steady and Spatio-Temporal Monitoring of Water Quality Feeding Area Southwest of Great Casablanca (Morocco)

Authors: Hicham Maklache, Rajae Delhi, Fatiha Benzha, Mohamed Tahiri

Abstract:

In Morocco, where semi-arid climate is dominant, the supply of industrial and drink water is provided primarily by surface water. Morocco has currently 118 multi-purpose dams. If the construction of these works was a necessity to ensure in all seasons, the water essential to our country, it is impartial to control and protect the quality of running water. -Most dam reservoir used are threatened by eutrophication due to increased terrigenous and anthropogenic pollutants, coming from an over-fertilization of water by phosphorus and nitrogen nutrients and accelerated by uncontrolled development of microalgae aging. It should also be noted that the daily practices of citizens with respect to the resource, an essential component involved in almost all human activities (agriculture, agro-industries, hydropower, ...), has contributed significantly to the deterioration of water quality despite its treatment in several plants. Therefore, the treated water, provides a legacy of bad tastes and odors unacceptable to the consumer. -The present work exhibits results of water quality watershed Oum Erbia used to supply drinking water to the whole terraced area connecting the city of Khenifra to the city of Azemmour. The area south west of Great Casablanca (metropolis of the kingdom with about 4 million inhabitants) supplied 50% of its water needs by sourcing Dam Sidi Said Maachou located, last anchor point of the watershed before the spill in the Atlantic Ocean. The results were performed in a spatio-temporal scale and helped to establish a history of monitoring water quality during the 2009-2011 cycles, the study also presents the development of quality according to the seasonal rhythmicity and rainfall. It gives also an overview on the concept of watershed stewardship.

Keywords: crude surface water quality, Oum Er Rbia hydraulic basin, spatio-temporal monitoring, Great Casablanca drink water quality, Morocco

Procedia PDF Downloads 420
238 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 100