Search results for: fraction ethyl acetate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1441

Search results for: fraction ethyl acetate

511 Preparation, Structure, and Properties of Hydroxyl Containing Acrylate Monomer Grafted Silk Fabrics by HRP-Catalyzed ATRP Method

Authors: Tieling Xing, Jinqiu Yang, Guoqiang Chen

Abstract:

It is environmentally friendly to use horseradish peroxidase (HRP) instead of the traditional transition metal catalyst for the catalyst of atom transfer radical polymerization (ATRP). Silk fabrics were successfully grafted with hydroxyl-containing acrylate monomer to improve its crease resistance by HRP-catalyzed ATRP method. Taking grafting yield as the evaluation index, single factor tests revealed that the optimum grafting reaction condition was as follow: monomer mass fraction 120-210%(o.w.f), HRP concentration 360-480U/mL, molar ratio of HRP to NaAsc 1:150, reaction temperature 50-60℃, reaction time 24h. Raman spectra showed hydroxyl-containing acrylate monomer were successfully grafted on silk fabrics. SEM figures indicated the surface of grafted silk became rougher, and graft copolymer was distributed evenly on the surface of silk fiber. The crease-resistant recovery property of grafted silk fabric was greatly improved, especially in wet crease recovery angle. The result showed hydroxyl-containing acrylate monomer can be successfully grafted onto silk fabric based on HRP-catalyzed ATRP method.

Keywords: atom transfer radical polymerization, catalysis, horseradish peroxidase, hydroxyl-containing acrylate monomer

Procedia PDF Downloads 151
510 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 353
509 Effect of Phytohormones on the Development and Nutraceutical Characteristics of the Fruit Capsicum annuum

Authors: Rossy G. Olan Villegas, Gerardo Acosta Garcia, Aurea Bernardino Nicanor, Leopoldo Gonzalez Cruz, Humberto Ramirez Medina

Abstract:

Capsicum annuum is a crop of agricultural and economic importance in Mexico and other countries. The fruit (pepper) contains bioactive components such as carotenoids, phenolic compounds and capsaicinoids that improve health. However, pepper cultivation is affected by biotic and abiotic factors that decrease yield. Some phytohormones like gibberellins and auxins induce the formation and development of fruit in several plants. In this study, we evaluated the effect of the exogenous application of phytohormones like gibberellic acid and indolbutyric acid on fruit development of jalapeno pepper plants, the protein profile of plant tissues, the accumulation of bioactive compounds and antioxidant activity in the pericarp and seeds. For that, plants were sprinkled with these phytohormones. The fruit collection for the control, indolbutyric acid and gibberellic acid treatments was 7 peppers per plant; however, for the treatment that combines indolbutyric acid and gibberellic acid, a fruit with the shortest length (1.52 ± 1.00 cm) and weight (0.41 ± 1.0 g) was collected compared to fruits of plants grown under other treatments. The length (4,179 ± 0,130 cm) and weight of the fruit (8,949 ± 0.583 g) increased in plants treated with indolbutyric acid, but these characteristics decreased with the application of GA3 (length of 3,349 ± 0.127 cm and a weight 4,429 ± 0.144 g). The content of carotenes and phenolic compounds increased in plants treated with GA3 (1,733 ± 0.092 and 1,449 ± 0.009 mg / g, respectively) or indolbutyric acid (1,164 ± 0.042 and 0.970 ± 0.003 mg / g). However, this effect was not observed in plants treated with both phytohormones (0.238 ± 0.021 and 0.218 ± 0.004 mg / g). Capsaicin content was higher in all treatments; but it was more noticeable in plants treated with both phytohormones, the value being 0.913 ± 0.001 mg / g (three times greater in amount). The antioxidant activity was measured by 3 different assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant power of ferric reduction (FRAP) and 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid ( ABTS) to find the minimum inhibitory concentration of the reducing radical (IC50 and EC50). Significant differences were observed from the application of the phytohormone, being the fruits treated with gibberellins, which had a greater accumulation of bioactive compounds. Our results suggest that the application of phytohormones modifies the development of fruit and its content of bioactive compounds.

Keywords: auxins, capsaicinoids, carotenoids, gibberellins

Procedia PDF Downloads 114
508 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 240
507 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
506 Analysis of the Air Pollution Behavior Registered at MACAM Net Using DOAS, Associated with High Pollution Episodes

Authors: Francisca Rojas Martínez, T. Pedro Oyola

Abstract:

The combination of the geographical and meteorological conditions of the Santiago basin are unfavorable for the circulation of atmospheric pollution, especially in the autumn and winter months. The problem of environmental pollution in the Metropolitan Region has been studied since the 1960s because the city has presented high pollution levels for most of the year, levels that have even been compared with those in cities in developed countries, This implies serious consequences for the health of the population. Two of the most important gasses present in the contamination are NO2, and O3, the highest concentrations of nitrogen dioxide are measured during the winter, in addition, it is considered as a great contribution to the fine fraction of particulate matter and as a precursor of tropospheric ozone. On the other hand, tropospheric ozone is a pollutant of photochemical origin and is strongly enhanced by solar radiation, which is why its presence in the atmosphere is more significant in the spring and summer. The measurements were made at 3 different places in Santiago, and were used different equipment; a DOAS for gasses measures, SIMCA for Black Carbon Measure and the MACAM net for particulate matter and meteorological condition. The results shows an important relation between height and presence of pollution gasses, and additionally, pollution episodes are in common low temperature (< 10 °C) and high relative humidity (> 80%), which are factors that allows the air suspension of particulate matter and focus NH4+ and NO3-.

Keywords: black carbon, DOAS, episodes, high pollution, simca

Procedia PDF Downloads 277
505 Development of a Two-Step 'Green' Process for (-) Ambrafuran Production

Authors: Lucia Steenkamp, Chris V. D. Westhuyzen, Kgama Mathiba

Abstract:

Ambergris, and more specifically its oxidation product (–)-ambrafuran, is a scarce, valuable, and sought-after perfumery ingredient. The material is used as a fixative agent to stabilise perfumes in formulations by reducing the evaporation rate of volatile substances. Ambergris is a metabolic product of the sperm whale (Physeter macrocephatus L.), resulting from intestinal irritation. Chemically, (–)-ambrafuran is produced from the natural product sclareol in eight synthetic steps – in the process using harsh and often toxic chemicals to do so. An overall yield of no more than 76% can be achieved in some routes, but generally, this is lower. A new 'green' route has been developed in our laboratory in which sclareol, extracted from the Clary sage plant, is converted to (–)-ambrafuran in two steps with an overall yield in excess of 80%. The first step uses a microorganism, Hyphozyma roseoniger, to bioconvert sclareol to an intermediate diol using substrate concentrations up to 50g/L. The yield varies between 90 and 67% depending on the substrate concentration used. The purity of the diol product is 95%, and the diol is used without further purification in the next step. The intermediate diol is then cyclodehydrated to the final product (–)-ambrafuran using a zeolite, which is not harmful to the environment and is readily recycled. The yield of the product is 96%, and following a single recrystallization, the purity of the product is > 99.5%. A preliminary LC-MS study of the bioconversion identified several intermediates produced in the fermentation broth under oxygen-restricted conditions. Initially, a short-lived ketone is produced in equilibrium with a more stable pyranol, a key intermediate in the process. The latter is oxidised under Norrish type I cleavage conditions to yield an acetate, which is hydrolysed either chemically or under lipase action to afford the primary fermentation product, an intermediate diol. All the intermediates identified point to the likely CYP450 action as the key enzyme(s) in the mechanism. This invention is an exceptional example of how the power of biocatalysis, combined with a mild, benign chemical step, can be deployed to replace a total chemical synthesis of a specific chiral antipode of a commercially relevant material.

Keywords: ambrafuran, biocatalysis, fragrance, microorganism

Procedia PDF Downloads 225
504 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures

Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi

Abstract:

Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).

Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation

Procedia PDF Downloads 259
503 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.

Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann

Procedia PDF Downloads 63
502 Heavy Minerals Distribution in the Recent Stream Sediments of Diyala River Basin, Northeastern Iraq

Authors: Abbas R. Ali, Daroon Hasan Khorsheed

Abstract:

Twenty one samples of stream sediments were collected from the Diyala River Basin (DRB), which represent one of three major tributaries of the Tigris River at northeastern Iraq. This study is concerned with the heavy minerals (HM) analysis in the + 63μ m fraction of the Diyala River sediments, distribution pattern in the various river basin sectors, as well as comparing the present results with previous works.The metastable heavy minerals (epidote, staurolite, garnet) represent more than (30%) Whereas the ultrastable heavy minerals (pyroxene and amphibole) make only about (19 %). Opaques are present in high proportions reaching about (29%) as an average. The ultrastable (zircon, tourmaline, rutile) heavy minerals are the miner constituents (7%) in the sediments.According to the laboratory analytical data of heavy mineral distributions the studied sediments are derived from mafic and ultramafic rocks are found in northeastern Iraq that represent Walash – Nawpordan Series and Mawat complexes in Zagros zones. The presence of zircon and tourmaline in trace amounts may give an indication for the weak role of acidic rocks in the source area whereas the epidote group minerals give an indication for the role of metamorphic rocks.

Keywords: heavy minerals, mineral distribution, recent stream sediment, Diyala river, northeastern Iraq

Procedia PDF Downloads 518
501 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 415
500 Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories

Authors: Saeed Kamarian

Abstract:

In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT.

Keywords: sandwich beam, nanocomposite beam, functionally graded materials, higher-order beam theories, Mori-Tanaka approach

Procedia PDF Downloads 462
499 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)

Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala

Abstract:

Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.

Keywords: bio-activity, bio-pesticides, maize, mycotoxin

Procedia PDF Downloads 72
498 Cytotoxicity of Thymoquinone Alone or in Combination with Cisplatin (CDDP) Against Oral Squamous Cell Carcinoma in Vitro

Authors: Omar M. Al Aufi, Abdulwahab Noorwali, Ahmed Al Abd, Safia Alattas, Fathya Zahran, Fahd Almutairi

Abstract:

Cisplatin (CDDP) is a potent anticancer agent used for several tumor types. Thymoquinone (TQ) is a naturally occurring compound drawing great attention as an anticancer and chemomodulator for chemotherapies. Herein, we studied the potential cytotoxicity of thymoquinone, CDDP and their combination against human oral squamous cell carcinoma cells in contrast to normal oral epithelial cells. CDDP similarly killed both head and neck squamous cell carcinoma cells (UMSCC-14C) and normal oral epithelial cells (OEC). TQ alone exerted considerable cytotoxicity against UMSCC-14C cells, while it induced a weaker killing effect against normal oral epithelial cells (OEC). The equitoxic combination of TQ and CDDP showed additive to synergistic interaction against both UMSCC-14C and OEC cells. TQ alone increased apoptotic cell fraction in UMSCC-14C cells as early as after 6 hours. In addition, prolonged exposure of UMSCC-14C to TQ alone resulted in 96.7±1.6% total apoptosis, which was increased after combination with CDDP to 99.3±1.2% in UMSCC-14C cells. On the other hand, TQ induced a marginal increase in the apoptosis in OEC and even decreased the apoptosis induced by CDDP alone. Finally, apoptosis induction results were confirmed by the change in the expression levels of p53, Bcl-2 and Caspase-9 proteins in both UMSCC-14c and OEC cells.

Keywords: thymoquinone, cisplatin, apoptosis, oral squamous cell carcinoma, P53, Caspase-9, Bcl-2

Procedia PDF Downloads 66
497 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field

Authors: Yi Zheng

Abstract:

Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.

Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase

Procedia PDF Downloads 79
496 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 451
495 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 266
494 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 152
493 Enhanced Growth and Innate Immune Response in Scylla serrata Fed Additives Containing Citrus microcarpa and Euphorbia hirta

Authors: Kaye Angelica Lacurom, Keziah Macahilo

Abstract:

One of the most important and in demand products in the Philippines is Scylla serrata. Despite the increasing demand in the market today, the cost of feeds corresponds to a fraction of 40%-50% of the entire operational of crab production. Raisers and suppliers are seeking alternative ways to lessen their expense with more effective enhancers than the usual feeds. This study aimed to enhance the growth and immune system of the mud crabs using natural antioxidants from plant powders that are available in the locality. There were four treatments: Diet 1: commercially available feeds for the positive control, Diet 2: 1,200 mg/kg Euphorbia hirta , Diet 3: 1,600 mg/kg of Citrus microcarpa, Diet 4: Mixed 1,400 of Euphorbia hirta and Citrus microcarpa. Air-drying was done first-hand followed by the grinding of plants. After which the plants were stored in a container and was added to the feed formulation given. Mud crabs were fed twice a day for 30 days for better results. For inferential analysis, weight gain and survivability were measured, hemolymph was extracted and the Total Hemocycte Count (THC) was determined analyzed. Results showed that the highest THC mean (9.0 x 105 ± 7.1 x 104) and weight gain mean (2.9 x 10± 1.9 x 10) was achieved by Diet 3 with the same survivability rates among other treatments and positive control. While Diet 2 presented the lowest THC mean (7.2 x 105 ±3.5 x 104) and weight gain mean (1.0 x 10± 7.0 x 10-1).

Keywords: fed additives, Scylla serrata, enhanced growth, innate immune response

Procedia PDF Downloads 138
492 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization

Procedia PDF Downloads 367
491 Recent Trend in Gluten-Free Bakery Products

Authors: Madhuresh Dwivedi, Navneet Singh Deora, H. N. Mishra

Abstract:

In the context of bakery products, the gluten component of wheat has a crucial role in stabilizing the gas-cell and crumb structures, appearance, mouth feel and maintaining the rheological properties, thus the acceptability of these products. However, because of coeliac disease, some individuals cannot tolerate the protein gliadin present in the gluten fraction of wheat flour. Also termed as gluten-sensitive enteropathy, it is a common chronicle disorder in populations throughout the world with average prevalence of 0.37%. The safest way for celiac sufferers is to stay away from gluten-containing foods such as wheat, rye, barley as well as durum wheat, spelt wheat, and triticale. Thus, in view of the current increasing incidence of gluten intolerant sufferers (due to improved diagnostic procedures), the development of gluten-free cereal-based bakery products suitable for celiac patients represents a challenging and serious task, but also very demanding call for food technologists as well as for the bakers. The use of alternative cereal starches (like rice, soy, maize, potato and so on), gums, hydrocolloids, dietary fibres, alternative protein sources, prebiotics and combinations of them represent the most widespread approach used as replacement to mimic gluten in the manufacture of industrial processable gluten-free bakery products due to their structure-building and water binding properties.

Keywords: gluten-free, coeliac disease, alternative flour, hydrocolloid, crumb structure

Procedia PDF Downloads 277
490 Investigation of Bubble Growth During Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity

Procedia PDF Downloads 385
489 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model

Procedia PDF Downloads 560
488 Long Waves Inundating through and around an Array of Circular Cylinders

Authors: Christian Klettner, Ian Eames, Tristan Robinson

Abstract:

Tsunami is characterised by their very long time periods and can have devastating consequences when these inundate through built-up coastal regions as in the 2004 Indian Ocean and 2011 Tohoku Tsunami. This work aims to investigate the effect of these long waves on the flow through and around a group of buildings, which are abstracted to circular cylinders. The research approach used in this study was using experiments and numerical simulations. Large-scale experiments were carried out at HR Wallingford. The novelty of these experiments is (I) the number of bodies present (up to 64), (II) the long wavelength of the input waves (80 seconds) and (III) the width of the tank (4m) which gives the unique opportunity to investigate three length scales, namely the diameter of the building, the diameter of the array and the width of the tank. To complement the experiments, dam break flow past the same arrays is investigated using three-dimensional numerical simulations in OpenFOAM. Dam break flow was chosen as it is often used as a surrogate for the tsunami in previous research and is used here as there are well defined initial conditions and high quality previous experimental data for the case of a single cylinder is available. The focus of this work is to better understand the effect of the solid void fraction on the force and flow through and around the array. New qualitative and quantitative diagnostics are developed and tested to analyse the complex coupled interaction between the cylinders.

Keywords: computational fluid dynamics, tsunami, forces, complex geometry

Procedia PDF Downloads 195
487 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 285
486 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 120
485 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria

Authors: Osayomwanbor E. Oghama, John O. Olomukoro

Abstract:

The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.

Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds

Procedia PDF Downloads 191
484 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 189
483 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 56
482 Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors.

Keywords: Landsat ETM+, EO1, data fusion, vegetation, Tassili, Algeria

Procedia PDF Downloads 433