Search results for: elastic scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1174

Search results for: elastic scattering

244 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements

Authors: M. A. García, J. Vinolas, A. Hernando

Abstract:

Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.

Keywords: magnetoelastic, magnetic induction, mechanical stress, steel

Procedia PDF Downloads 7
243 Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture

Authors: Kiza Rusati Pacifique, Ki-il Song

Abstract:

The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field.

Keywords: damping ratio, electrical resistivity, ground improvement, inorganic binder, longitudinal wave velocity, unconfined compression strength

Procedia PDF Downloads 326
242 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 464
241 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters

Authors: Iveta Bryjova

Abstract:

Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.

Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity

Procedia PDF Downloads 282
240 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 179
239 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 256
238 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 396
237 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 142
236 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 153
235 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 75
234 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 199
233 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 152
232 An Overview of Pakistani Shales for Shale Gas Exploration and Comparison to North American Shale Plays

Authors: Ghulam Sohail, Christopher Hawkes

Abstract:

Pakistan has been facing a growing energy crisis for the last decade, and the government is seeking new horizons for increasing oil and gas production to reduce the gap between supply and demand. Recent developments in technologies to produce natural gas from shales at economical rates has unlocked new horizons for hydrocarbon exploration and development throughout the world. Operating companies in the U.S.A. and Canada have been particularly successful at producing shale gas, so comparing against the properties of shale gas reservoirs in these countries is used for an initial assessment of prospective shale gas reservoirs in other parts of the world. In this study, selected source rocks of Pakistan are evaluated for their shale gas potential using analogs selected from various North American shales for which data have been published. Published data for Pakistani shales were compiled, then assessed and supplemented through consultation with industry professionals. Pakistani formations reviewed are the Datta (shaly sandstone), Hangu (sandy shale), Patala (sandy shale), Ranikot (shaly sandstone), Sembar (sandy shale) and Lower Goru (shaly sandstone) formations, all of which are known source rocks in the Indus Basin. For this study, available geological, geochemical, petrophysical and elastic parameters have been investigated and are correlated specifically with the eight most active shale gas plays of the U.S.A., while data for other North American shale gas plays are used for general discussion on prospective Pakistani shales. The results show that the geological and geochemical parameters of all the Pakistani shales reviewed in this work are promising regarding their shale gas. However, more petrophysical and geomechanical data are required before conclusions on economic production from these shales can be made with confidence.

Keywords: Canada shale gas, Indus Basin, Pakistani shales, U.S.A shale gas

Procedia PDF Downloads 172
231 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 197
230 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses.

Procedia PDF Downloads 10
229 Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources

Authors: Zhao Kuo, Chen Liang, Zhang Zhongbing, Ruan Jinlu. He Shiyi, Xu Mengxuan

Abstract:

Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time.

Keywords: stilbene crystal, accelerator neutron source, neutron / γ discrimination, figure-of-merits, CAMAC, waveform digitization

Procedia PDF Downloads 168
228 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 42
227 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 185
226 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan

Authors: Yi-Hao Pai, Wen-Feng Chen

Abstract:

The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.

Keywords: agricultural waste, gasification, energy conversion, pomelo garden

Procedia PDF Downloads 122
225 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 237
224 Flexural Behavior of Geocell Reinforced Subgrade with Demolition Waste as Infill Material

Authors: Mahima D, Sini T

Abstract:

The use of geocell in subgrade has been previously studied by various researchers in the past. It was observed that the infill material used could affect the performance of the geocell reinforced subgrade. So, the use of waste materials as infill in geocell reinforced subgrade may prove to be more effective, economical, and environment-friendly. The performance of demolition waste as an infill was studied using flexure testing, and we compared the results with that of the other infill materials; soil and sand. Flexural behaviour is very important to the geosynthetic application in pavements as it acts as a the geocell reinforcement acts as flexible layer embedded in pavements and leads to an improvement in stress distribution and reduction in stress on the soil subgrade. The flexural behaviour was determined using four-point bending tests and results were expressed in terms of modulus improvement factor (MIF) and load-deflection behaviour. The geocell reinforced subgrade with different infill materials was tested for flexural behaviour in a polywood-polywood three-layered beam model. The deflections of the three-layered model beam were measured for the corresponding load increments. Elastic modulus of the soil-geocell composite was calculated using closed-form solutions. Geocells were prepared from geonets with three different aspect ratios 0.45, 0.67, and 1. The demolition waste infilled geocell mattress with aspect ratio 0.67 showed improved flexural behavior with MIF of 2.67 followed by soil and sand. Owing to its improved flexural resistance as seen from the MIF and load-deflection behivour, crushed demolition waste can be effectively used as infill material for geocell reinforced subgrade, thereby reducing the difficulties in the management of demolition waste and improving the load distribution of weaker subgrade.

Keywords: demolition waste, flexural behavior, geocell, modulus improvement factor

Procedia PDF Downloads 119
223 Smart Technology Work Practices to Minimize Job Pressure

Authors: Babar Rasheed

Abstract:

The organizations are in continuous effort to increase their yield and to retain their associates, employees. Technology is considered an integral part of attaining apposite work practices, work environment, and employee engagement. Unconsciously, these advanced practices like work from home, personalized intra-network are disturbing employee work-life balance which ultimately increases psychological pressure on employees. The smart work practice is to develop business models and organizational practices with enhanced employee engagement, minimum trouncing of organization resources with persistent revenue and positive addition in global societies. Need of smart work practices comes from increasing employee turnover rate, global economic recession, unnecessary job pressure, increasing contingent workforce and advancement in technologies. Current practices are not enough elastic to tackle global changing work environment and organizational competitions. Current practices are causing many reciprocal problems among employee and organization mechanically. There is conscious understanding among business sectors smart work practices that will deal with new century challenges with addressing the concerns of relevant issues. It is aimed in this paper to endorse customized and smart work practice tools along knowledge framework to manage the growing concerns of employee engagement, use of technology, orgaization concerns and challenges for the business. This includes a Smart Management Information System to address necessary concerns of employees and combine with a framework to extract the best possible ways to allocate companies resources and re-align only required efforts to adopt the best possible strategy for controlling potential risks.

Keywords: employees engagement, management information system, psychological pressure, current and future HR practices

Procedia PDF Downloads 166
222 Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals

Authors: Sophio Kobauri, David Tugushi, Vladimir P. Torchilin, Ramaz Katsarava

Abstract:

Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals.

Keywords: amino acid – L-phenylalanine, pseudo-proteins, amphiphilic block-copolymers, biodegradable micelles

Procedia PDF Downloads 122
221 Finite Deformation of a Dielectric Elastomeric Spherical Shell Based on a New Nonlinear Electroelastic Constitutive Theory

Authors: Odunayo Olawuyi Fadodun

Abstract:

Dielectric elastomers (DEs) are a type of intelligent materials with salient features like electromechanical coupling, lightweight, fast actuation speed, low cost and high energy density that make them good candidates for numerous engineering applications. This paper adopts a new nonlinear electroelastic constitutive theory to examine radial deformation of a pressurized thick-walled spherical shell of soft dielectric material with compliant electrodes on its inner and outer surfaces. A general formular for the internal pressure, which depends on the deformation and a potential difference between boundary electrodes or uniform surface charge distributions, is obtained in terms of special function. To illustrate the effects of an applied electric field on the mechanical behaviour of the shell, three different energy functions with distinct mechanical properties are employed for numerical purposes. The observed behaviour of the shells is preserved in the presence of an applied electric field, and the influence of the field due to a potential difference declines more slowly with the increasing deformation to that produced by a surface charge. Counterpart results are then presented for the thin-walled shell approximation as a limiting case of a thick-walled shell without restriction on the energy density. In the absence of internal pressure, it is obtained that inflation is caused by the application of an electric field. The resulting numerical solutions of the theory presented in this work are in agreement with those predicted by the generally adopted Dorfmann and Ogden model.

Keywords: constitutive theory, elastic dielectric, electroelasticity, finite deformation, nonlinear response, spherical shell

Procedia PDF Downloads 60
220 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations

Procedia PDF Downloads 323
219 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 30
218 Vulnerability of Steel Moment-Frame Buildings with Pinned and, Alternatively, with Semi-Rigid Connections

Authors: Daniel Llanes, Alfredo Reyes, Sonia E. Ruiz, Federico Valenzuela Beltran

Abstract:

Steel frames have been used in building construction for more than one hundred years. Beam-column may be connected to columns using either stiffened or unstiffened angles at the top and bottom beam flanges. Designers often assume that these assemblies acted as “pinned” connections for gravity loads and that the stiffened connections would act as “fixed” connections for lateral loads. Observation of damages sustained by buildings during the 1994 Northridge earthquake indicated that, contrary to the intended behavior, in many cases, brittle fractures initiated within the connections at very low levels of plastic demand, and in some cases, while the structures remained essentially elastic. Due to the damage presented in these buildings other type of alternative connections have been proposed. According to a research funded by the Federal Emergency Management Agency (FEMA), the screwed connections have better performance when they are subjected to cyclic loads, but at the same time, these connections have some degree of flexibility. Due to this situation, some researchers ventured into the study of semi-rigid connections. In the present study three steel buildings, constituted by regular frames are analyzed. Two types of connections are considered: pinned and semi-rigid connections. With the aim to estimate their structural capacity, a number of incremental dynamic analyzes are performed. 3D structural models are used for the analyses. The seismic ground motions were recorded on sites near Los Angeles, California, where the structures are supposed to be located. The vulnerability curves of the building are obtained in terms of maximum inter-story drifts. The vulnerability curves (which correspond to the models with two different types of connections) are compared, and its implications on its structural design and performance is discussed.

Keywords: steel frame Buildings, vulnerability curves, semi-rigid connections, pinned connections

Procedia PDF Downloads 208
217 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization

Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner

Abstract:

Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.

Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids

Procedia PDF Downloads 207
216 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting

Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini

Abstract:

Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.

Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys

Procedia PDF Downloads 83
215 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle

Authors: Khaled M. Khader, Mamdouh I. Elimy

Abstract:

Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.

Keywords: Composite Material, Crank-Rocker Mechanism, Transmission angle, Design techniques, Power Saving

Procedia PDF Downloads 279