Search results for: data databases
24587 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data
Authors: Salam Khalifa, Naveed Ahmed
Abstract:
We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation
Procedia PDF Downloads 37324586 Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation
Authors: Kiwon Yeom
Abstract:
Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples.Keywords: change point, discontinuity, teleoperation, abrupt variation
Procedia PDF Downloads 16724585 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 44324584 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 19624583 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum
Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold
Abstract:
Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.Keywords: biocatalyst, fluorinase, gifblaar, transcriptome
Procedia PDF Downloads 27324582 Method of Nursing Education: History Review
Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán
Abstract:
Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education
Procedia PDF Downloads 11324581 Theorizing Digital Transformation, Digitization and Digitalization in Africa Emerging Research in Digital Business: A Critical Review of the Current Scholarship
Authors: Ayanda Magida
Abstract:
The paper aims to provide a critical review of the current state-of-the-art literature on emerging digital business theories. They are specifically focusing on the emergent theories on digital transformation, digitization, and digitalization and their importance in the global south. Digital business is an emergent field that cuts across the different existing disciplines. The paper is threefold- to provide the conceptual and theoretical definition of the DT, digitization and digitization. There is a growing need to provide some of the differences between digitalization, digitization and digital transformation from a theoretical and conceptual basis. These tend to be confused and often use interchangeably the second aim is to focus on the emerging theories on digital transformation and digital business. Finally, the paper provides some critical review of the importance of scholarship in the field from the global south. The systematic review of the literature was conducted through the different research databases to provide some of the major theories in the field of digital business and critically argue for the global south stance. Much of the research on the development and adoption of digital technologies, specifically digital transformation, has been done in the west and developed countries. There is thus a dearth of research conducted in developing countries and the global south.Keywords: digital transformation, digitization, digital business, digitalization
Procedia PDF Downloads 27424580 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 43524579 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 17024578 The Effects of Vitamin D Supplementation on Anthropometric Indicators of Adiposity and Fat Distribution in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Simin Zarea Karizi, Somaye Fatahi, Amirhossein Hosseni
Abstract:
Background: There are conflicting findings regarding the effect of vitamin D supplementation on obesity-related factors. This study aimed to investigate the effect of vitamin D supplementation on changes in anthropometric indicators of adiposity and fat distribution in children and adolescents. Methods: Original databases were searched using standard keywords to identify all controlled trials investigating the effects of vitamin D supplementation on obesity-related factors in children and adolescents. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis. Results: Fourteen treatment arms were included in this systematic review and meta-analysis. The quantitative meta-analysis revealed no significant effect of vitamin D supplement on BMI (-0.01 kg/m2; 95% CI: -0.09, 0.12; p= 0.74; I2=0.0%), BMI z score (0.02; 95% CI: -0.04, 0.07; p= 0.53; I2=0.0%) and fat mass (0.07%; 95% CI: -0.09 to 0.24; p= 0.38; I2=31.2%). However, the quantitative meta-analysis displayed a significant effect of vitamin D supplementation on WC compared with the control group (WMD=-1.17 cm, 95% CI: -2.05, -0.29, p=0.009; I2=32.0 %). It seems that this effect was greater in healthy children with duration>12 weeks, dose<=400 IU and baseline less than 50 nmol/l vitamin D than others. Conclusions: Our findings suggest that vitamin D supplementation may be a protective factor of abdominal obesity and should be evaluated on an individual basis in clinical practice.Keywords: weight loss, vitamin D, anthropometry, children, adolescent
Procedia PDF Downloads 2624577 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 8024576 The Impact of Data Science on Geography: A Review
Authors: Roberto Machado
Abstract:
We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.Keywords: data science, geography, systematic review, optimization algorithms, supervised learning
Procedia PDF Downloads 2924575 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 13324574 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 37824573 Facility Data Model as Integration and Interoperability Platform
Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes
Abstract:
Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.Keywords: airport ontology, energy management, facility data model, ontology modeling
Procedia PDF Downloads 44824572 Forensic Necropsy-Importance in Wildlife Conservation
Authors: G. V. Sai Soumya, Kalpesh Solanki, Sumit K. Choudhary
Abstract:
Necropsy is another term used for an autopsy, which is known as death examination in the case of animals. It is a complete standardized procedure involving dissection, observation, interpretation, and documentation. Government Bodies like National Tiger Conservation Authority (NTCA) have given standard operating procedures for commencing the necropsies. Necropsies are rarely performed as compared to autopsies performed on human bodies. There are no databases which maintain the count of autopsies in wildlife, but the research in this area has shown a very small number of necropsies. Long back, wildlife forensics came into existence but is coming into light nowadays as there is an increase in wildlife crime cases, including the smuggling of trophies, pooching, and many more. Physical examination in cases of animals is not sufficient to yield fruitful information, and thus postmortem examination plays an important role. Postmortem examination helps in the determination of time since death, cause of death, manner of death, factors affecting the case under investigation, and thus decreases the amount of time required in solving cases. Increasing the rate of necropsies will help forensic veterinary pathologists to build standardized provision and confidence within them, which will ultimately yield a higher success rate in solving wildlife crime cases.Keywords: necropsy, wildlife crime, postmortem examination, forensic application
Procedia PDF Downloads 13924571 Intimate Partner Violence Concerns during COVID-19 Pandemic
Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami
Abstract:
Background: In March 2020, the World Health Organization (WHO) declared the outbreak of a new coronavirus disease, COVID-19, as a public health concern and pandemic. This situation is generating psychological consequences such as stress, anxiety, depression, and intimate partner violence (IPV) throughout the population. This is a brief note on the magnitude of this threat and different ways for abused women to minimize the effects of it in their daily life. Methods: A literature review was conducted using the MEDLINE, PSYCHINFO, and SCIENCE DIRECT databases. The keywords used included intimate partner violence, abuse, victims, pandemic, quarantine, coronavirus, and COVID-19. A Google search was also conducted using these words to identify reports published in non-indexed health care and social science journals. The literature search was restricted to English language studies. Results: The prevalence of IPV and its consequences are rising during such a pandemic. Having sufficient support from healthcare workers and acquaintances is critical for women in such circumstances. Conclusion: Community members, healthcare providers, governments, and policymakers should be informed of the increased risk of IPV during such a pandemic. They should provide a supporting structure for abused women. Social networking is also a good approach that could help abusive women during this situation.Keywords: covid-19, intimate partner violence, pandemic, women
Procedia PDF Downloads 6424570 The Economic Burden of Mental Disorders: A Systematic Review
Authors: Maria Klitgaard Christensen, Carmen Lim, Sukanta Saha, Danielle Cannon, Finley Prentis, Oleguer Plana-Ripoll, Natalie Momen, Kim Moesgaard Iburg, John J. McGrath
Abstract:
Introduction: About a third of the world’s population will develop a mental disorder over their lifetime. Having a mental disorder is a huge burden in health loss and cost for the individual, but also for society because of treatment cost, production loss and caregivers’ cost. The objective of this study is to synthesize the international published literature on the economic burden of mental disorders. Methods: Systematic literature searches were conducted in the databases PubMed, Embase, Web of Science, EconLit, NHS York Database and PsychInfo using key terms for cost and mental disorders. Searches were restricted to 1980 until May 2019. The inclusion criteria were: (1) cost-of-illness studies or cost-analyses, (2) diagnosis of at least one mental disorder, (3) samples based on the general population, and (4) outcome in monetary units. 13,640 publications were screened by their title/abstract and 439 articles were full-text screened by at least two independent reviewers. 112 articles were included from the systematic searches and 31 articles from snowball searching, giving a total of 143 included articles. Results: Information about diagnosis, diagnostic criteria, sample size, age, sex, data sources, study perspective, study period, costing approach, cost categories, discount rate and production loss method and cost unit was extracted. The vast majority of the included studies were from Western countries and only a few from Africa and South America. The disorder group most often investigated was mood disorders, followed by schizophrenia and neurotic disorders. The disorder group least examined was intellectual disabilities, followed by eating disorders. The preliminary results show a substantial variety in the used perspective, methodology, costs components and outcomes in the included studies. An online tool is under development enabling the reader to explore the published information on costs by type of mental disorder, subgroups, country, methodology, and study quality. Discussion: This is the first systematic review synthesizing the economic cost of mental disorders worldwide. The paper will provide an important and comprehensive overview over the economic burden of mental disorders, and the output from this review will inform policymaking.Keywords: cost-of-illness, health economics, mental disorders, systematic review
Procedia PDF Downloads 13124569 Exploring the Efficacy of Nitroglycerin in Filler-Induced Facial Skin Ischemia: A Narrative Review
Authors: Amir Feily, Hazhir Shahmoradi Akram, Mojtaba Ghaedi, Farshid Javdani, Naser Hatami, Navid Kalani, Mohammad Zarenezhad
Abstract:
Background: Filler-induced facial skin ischemia is a potential complication of dermal filler injections that can result in tissue damage and necrosis. Nitroglycerin has been suggested as a treatment option due to its vasodilatory effects, but its efficacy in this context is unclear. Methods: A narrative review was conducted to examine the available evidence on the efficacy of nitroglycerin in filler-induced facial skin ischemia. Relevant studies were identified through a search of electronic databases and manual searching of reference lists. Results: The review found limited evidence supporting the efficacy of nitroglycerin in this context. While there were case reports where the combination of nitroglycerin and hyaluronidase was successful in treating filler-induced facial skin ischemia, there was only one case report where nitroglycerin alone was successful. Furthermore, a rat model did not demonstrate any benefits of nitroglycerin and showed harmful results. Conclusion: The evidence regarding the efficacy of nitroglycerin in filler-induced facial skin ischemia is inconclusive and seems to be against its application. Further research is needed to determine the effectiveness of nitroglycerin alone and in combination with other treatments for this condition. Clinicians should consider limited evidence bases when deciding on treatment options for patients with filler-induced facial skin ischemia.Keywords: nitroglycerin, facial, skin ischemia, fillers, efficacy, narrative review
Procedia PDF Downloads 9224568 Prevailing Clinical Evidence on Medicinal Hemp (Cannabis Sativa L.)
Authors: Siti Hajar Muhamad Rosli, Xin Yi Lim, Terence Yew Chin Tan, Muhammad nor Farhan Sa’At, Syazwani Sirdar Ali, Ami Fazlin Syed Mohamed
Abstract:
A growing interest on therapeutic benefits of hemp (Cannabis sativa subsp. sativa) is evident in the pharmaceutical market, attributed to its lower levels of psychoactive constituent delta-9-tetrahydronannabidiol (THC). Deemed as a legal and safer alternative to its counterpart marijuana, the use of medicinal hemp is highly debatable as current scientific evidence on the efficacy for clinical use is yet to be established This study was aimed to provide an overview of the current landscape of hemp research, through recent clinical findings specific to the pharmacological properties of the hemp plant and its derived compounds. A systematic search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis-ScR (PRISMA) checklist on electronic databases (MEDLINE, OVID, Cochrane Library Central, and Clinicaltrials.gov) for articles published from 2009 to 2019. With predetermined inclusion criteria, all human trials with hemp intervention were included. A total of 18 human trials were identified, investigating therapeutic effects on the neuronal, gastrointestinal, musculoskeletal and immune system, with sample sizes ranging from one to 194 subjects. Three randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) consumption significantly improved spontaneous bowel movement in functional constipation. The use of commercial cannabidiol (CBD) sourced from hemp suggested benefits in cannabis dependence, epilepsy, and anxiety disorders. However, there was insufficient evidence to suggest analgesic or anxiolytics effects of hemp being equivalent to marijuana. All clinical trials reviewed varied in terms of test item formulation and standardisation, which made it challenging to confirm overall efficacy for a specific disease or condition. Published efficacy data on hemp are still at a preliminary level, with limited high quality clinical evidence for any specific therapeutic indication. With multiple variants of this plant having different phytochemical and bioactive compounds, future empirical research should focus on uniformity in experimental designs to further strengthen the notion of using medicinal hemp.Keywords: cannabis, complementary medicine, hemp, herbal medicine.
Procedia PDF Downloads 11824567 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 10524566 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 27424565 A Relational Data Base for Radiation Therapy
Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez
Abstract:
As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.Keywords: information management system, radiation oncology, medical physics, free software
Procedia PDF Downloads 24224564 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University
Authors: Komol Phaisarn, Natcha Wattanaprapa
Abstract:
This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.Keywords: security, safety, storage devices, graduate students
Procedia PDF Downloads 35324563 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment
Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah
Abstract:
Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.Keywords: response time, query, consistency, bandwidth, storage capacity, CERN
Procedia PDF Downloads 27124562 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 4024561 Barriers to Participation in Sport for Children without Disability: A Systematic Review
Authors: S. Somerset, D. J. Hoare
Abstract:
Participation in sport is linked to better mental and physical health in children and adults. Studies have shown children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sports from a young age are also more likely to continue to have active lifestyles during adulthood. This is an important consideration with a nation where physical activity levels are declining and the incidences of obesity are rising. Getting children active and keeping them active can provide long term health benefits to the individual but also a potential reduction in health costs in the future. This systematic review aims to identify the barriers to participation in sport for children aged up to 18 years and encompasses both qualitative and quantitative studies. The bibliographic databases, EMBASE, Medline, CINAHL and SportDiscus were searched. Additional hand searches were carried out on review articles found in the searches to identify any studies that may have been missed. Studies involving children up to 18 years without additional needs focusing on barriers to participation in sport were included. Randomised control trials, policy guidelines, studies with sport as an intervention, studies focusing on the female athlete triad, tobacco abuse, alcohol abuse, drug abuse, pre exercise testing, and cardiovascular disease were excluded. Abstract review, full paper review and quality appraisal were conducted by two researchers. A consensus meeting took place to resolve any differences at the abstract, full text and data extraction / quality appraisal stages. The CASP qualitative studies appraisal tool and the CASP cohort studies tool (excluding question 3 and 4 which refer to interventions) were used for quality appraisal in this review. The review identified several salient barriers to participation in sport for children. These barriers ranged from the uniform worn during school physical education lessons to the weather during participation in sport. The most commonly identified barriers in the review include parental support, time allocation, location of the activity and the cost of the activity. Therefore, it would be beneficial for a greater provision to be made within the school environment for children to participate sport. This can reduce the cost and time commitment required from parents to encourage participation. This would help to increase activity levels of children, which ultimately can only be a good thing.Keywords: barrier, children, participation, sport
Procedia PDF Downloads 36124560 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 31424559 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction
Authors: S. Anastasiou, C. Nathanailides
Abstract:
The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.Keywords: job satisfaction, job performance, customer’ service, banks, human resources management
Procedia PDF Downloads 32124558 Rigorous Literature Review: Open Science Policy
Authors: E. T. Svahn
Abstract:
This article documents how open science policy is perceived in the scientific literature globally throughout the history. It also presents what policy needs are persistent to enable safe and effective dissemination of scientific knowledge. This information may be of interest to open science and science policy makers globally, especially in the view of recent adoption of supranational open science policies such as Plan S. Evaluation of open science policy landscape is in pressing need of assessment regarding its impact on the research community and society at wide as no previous literature review has been conducted on the topic. This study is a rigorous literature review based on constructivist grounded theory method on the full body of scientific open science policy publications. Selection of these articles has been conducted in 2019 and 2020 in major global knowledge databases. Through the analysis of these articles, two key themes emerged that are seen to shape the relationship between science and society. 1st is that of the policy enabling open science in a safe and effective way, and 2nd is that of the outcome of the science policy may have on the research community and the wider society. These findings accentuate that open science policies can have a major impact on not only research process and availability of knowledge but also on society itself. As an outcome of this study, a theoretical framework is constructed, and the need for further study on open science policy itself on a higher level becomes apparent.Keywords: constructivist grounded theory, open science policy, rigorous literature review, science policy
Procedia PDF Downloads 167