Search results for: channel depth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4325

Search results for: channel depth

3395 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India

Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar

Abstract:

The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.

Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic

Procedia PDF Downloads 56
3394 The Usefulness and Limitations of Manual Aspiration Immediately after Pneumothorax Complicating Percutaneous CT Guided Lung Biopsies: A Retrospective 9-Year Review from a Large Tertiary Centre

Authors: Niall Fennessy, Charlotte Yin, Vineet Gorolay, Michael Chan, Ilias Drivas

Abstract:

Background: The aim of this study was to evaluate the effect of manual aspiration of air from the pleural cavity in mitigating the need for chest drain placement after a CT-guided lung biopsy. Method: This is a single institution retrospective review of CT-guided lung biopsies performed on 799 patients between September 2013 and May 2021 in a major tertiary hospital. Percutaneous manual aspiration of air was performed in 104/306 patients (34%) with pneumothoraxes as a preventative measure. Simple and multivariate analysis was performed to identify independent risk factors (modifiable and nonmodifiable) for the success of manual aspiration in mitigating the need for chest drain insertion. Results: The overall incidence of pneumothorax was 37% (295/799). Chest drains were inserted for 81/295 (27%) of the pneumothoraxes, representing 81/799 (10%) of all CT-guided lung biopsies. Of patients with pneumothoraces, 104 (36%) underwent percutaneous aspiration via either the coaxial guide needle or an 18 or 20G intravenous catheter attached to a three-way stopcock and syringe. Amongst this group, 13 patients (13%) subsequently required chest drain insertion. The success of percutaneous aspiration in avoiding subsequent pleural drain insertion decreased with aspiration volume >500mL, radial pneumothorax depth >3cm, increased subpleural depth of the lesion, and the presence of background emphysema.

Keywords: computed tomography, lung biopsy, pneumothorax, manual aspiration, chest drainage

Procedia PDF Downloads 154
3393 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds

Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann

Abstract:

Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.

Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC

Procedia PDF Downloads 155
3392 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 286
3391 Physical and Chemical Parameters of Lower Ogun River, Ogun State, Nigeria

Authors: F.I. Adeosun, A.A. Idowu, D.O. Odulate,

Abstract:

The aims of carrying out this experiment were to determine the water quality and to investigate if the various human and ecological activities around the river have any effect on the physico-chemical parameters of the river’s resources with a view to effectively utilizing these resources. Water samples were collected from two stations on the surface water of Lower Ogun River Akomoje biweekly for a period of 5 months (January to May, 2011). Results showed that temperature ranged between 24.0-30.7oC, transparency (0.53-1.00 m), depth (1.0-3.88 m), alkalinity (4.5-14.5 mg/l), nitrates (0.235-5.445 mg/l), electrical conductivity (140-190µS/cm), dissolved oxygen (4.12-5.32 mg/l), phosphates (0.02 mg/l-0.7 5 mg/l) and total dissolved solids (70-95).The parameters at the deep end (station A) accounted for the bulk of the highest values; there was however no significant differences between the stations at P˂0.05 with the exception of transparency, depth, total dissolved solids and electrical conductivity. The phosphate value was relatively low which accounted for the low productivity and high transparency. The results obtained from the physico-chemical parameters agreed with the limits set by both national and international bodies for drinking and fish growth. It was however observed that during the period of data collection, catch was low and this could be attributed to low level of primary productivity due to the quality of physico-chemical parameters of the water. It is recommended that the agencies involved in the management of the river should put the right policies in place that will effectively enhance proper exploitation of the water resources. More research should also be carried out on the physico-chemical parameters since this work only studied the water for five months.

Keywords: physical, chemical, parameters, water quality, Ogunriver

Procedia PDF Downloads 665
3390 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program: The Instructors' Perspective

Authors: Hossein Heidari Tabrizi, Azizeh Chalak

Abstract:

The present study investigated in depth the way translation teachers design and develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs

Procedia PDF Downloads 532
3389 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 74
3388 Carbon Nanotube Field Effect Transistor - a Review

Authors: P. Geetha, R. S. D. Wahida Banu

Abstract:

The crowning advances in Silicon based electronic technology have dominated the computation world for the past decades. The captivating performance of Si devices lies in sustainable scaling down of the physical dimensions, by that increasing device density and improved performance. But, the fundamental limitations due to physical, technological, economical, and manufacture features restrict further miniaturization of Si based devices. The pit falls are due to scaling down of the devices such as process variation, short channel effects, high leakage currents, and reliability concerns. To fix the above-said problems, it is needed either to follow a new concept that will manage the current hitches or to support the available concept with different materials. The new concept is to design spintronics, quantum computation or two terminal molecular devices. Otherwise, presently used well known three terminal devices can be modified with different materials that suits to address the scaling down difficulties. The first approach will occupy in the far future since it needs considerable effort; the second path is a bright light towards the travel. Modelling paves way to know not only the current-voltage characteristics but also the performance of new devices. So, it is desirable to model a new device of suitable gate control and project the its abilities towards capability of handling high current, high power, high frequency, short delay, and high velocity with excellent electronic and optical properties. Carbon nanotube became a thriving material to replace silicon in nano devices. A well-planned optimized utilization of the carbon material leads to many more advantages. The unique nature of this organic material allows the recent developments in almost all fields of applications from an automobile industry to medical science, especially in electronics field-on which the automation industry depends. More research works were being done in this area. This paper reviews the carbon nanotube field effect transistor with various gate configurations, number of channel element, CNT wall configurations and different modelling techniques.

Keywords: array of channels, carbon nanotube field effect transistor, double gate transistor, gate wrap around transistor, modelling, multi-walled CNT, single-walled CNT

Procedia PDF Downloads 300
3387 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 117
3386 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 350
3385 Family Living with Adolescent Mother: The Consequential Effects of Adolescent Pregnancy

Authors: Somsakhool Neelasmith, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

Adolescent pregnancy is a major global concern including Thailand, which has long adopted policies and solutions to prevent such problem. Family is one of the key strategies to drive policy achievement whereas the various families and regional differences will be challenges. This article reports a preliminary study finding using qualitative case study methods, aiming to explore the situation of families living with adolescent mother in the North Eastern of Thailand or ISAN. Data were collected by in-depth interview with six key informants; five adolescent mothers age 14- 19 years and one mother in law of adolescent mother during November to December of 2017. The preliminary suggests that firstly, the adolescent pregnancy was found to be one of the significant issues among most of the families and that adolescent mothers and their family perceived other families were also faced with this problem with despite different conditions. Secondly, the parents assumed simultaneous roles as both parents and grandparents when one of their adolescent girls became an adolescent mother. Lastly, when perceiving that their adolescent daughter became pregnant, families addressed this issue by compromise with the related parties to maintain family and social relationship. This situation can be a potential intractable problem to adolescents and their families. Families may suffer from adolescent pregnancy with respect to health, economy and other family burdens. Moreover, the national development may be affected or delayed since this group of people is considered promising human resource. It is therefore required to further conduct in-depth research to cope with this issue particularly about the policies related to adolescent pregnancy.

Keywords: adolescent mother, adolescent pregnancy, consequential effect, family living with adolescent mother

Procedia PDF Downloads 266
3384 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 173
3383 Assessment of the Physical and Chemical Characteristics of Ugbogui River, Edo State, Nigeria

Authors: Iyagbaye O. Rich, Omoigberale O. Michael, Iyagbaye A. Louis

Abstract:

The physical, chemical parameters and some trace contents of Ugbogui in Edo State, Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream using standard methods. A total of thirty-three (33) physical and chemical characteristics and trace metal contents were examined; Air and water temperatures, depth, transparency, colour, turbidity, flow velocity, pH, total alkalinity, conductivity and dissolved solids etc. Other includes dissolved oxygen, oxygen saturation, biochemical oxygen demand, chloride, phosphate, sodium, nitrate, sulphate, potassium, calcium, magnesium, iron, lead, copper, zinc, nickel, cadmium, vanadium and chromium. Eleven (11) parameters exhibited clear seasonal variations. However, there were high significant differences (p < 0.01) in the values of depth, colour, total suspended solid, biochemical oxygen demand, chemical oxygen demand, chloride, bicarbonate, phosphate, sulphate, iron, manganese, zinc, copper, chromium and cadmium among the stations. The anthropogenic activities had negatively impacted at station 3 of the river, although most of the recorded values were still within permissible limits.

Keywords: anthropogenic activities, Nigeria, permissible limits, physical and chemical parameters, trace metal, water quality

Procedia PDF Downloads 109
3382 Velocity Distribution in Open Channels with Sand: An Experimental Study

Authors: E. Keramaris

Abstract:

In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.

Keywords: particle image velocimetry, sand bed, velocity distribution, Reynolds number

Procedia PDF Downloads 359
3381 Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V

Authors: Saad Nawaz, Yu Gang, Miao Haibin

Abstract:

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation.

Keywords: tool wear, cutting speed, flank wear , tool life

Procedia PDF Downloads 300
3380 Impact of Homestay Tourism on the Traditional Lifestyle and Culture of the Indigenous Tharu People: A Case Study of Nepal

Authors: Durga Prasad Neupane

Abstract:

This study investigates the impacts of homestay tourism on the traditional lifestyle and culture of the indigenous Tharu people in Nepal. It explores how this form of tourism has influenced the lives of Tharu individuals and their community as a whole. The study delves into the effects of tourism on various aspects, including language, socio-economic development, and cultural promotion and revival. Employing a qualitative approach and a case study design, the study gathers in-depth and comprehensive data on the impacts of homestay tourism on the Amaltari Tharu community. Building rapport with respondents, including homestay management committees, Tharu homestay owners, and non-Tharu residents, is achieved through various channels like personal interactions, phone conversations, and repeated visits. The research further combines document analysis with in-depth interviews to glean diverse perspectives and insights. The study's findings reveal that while homestay tourism presents challenges, it also holds significant potential for promoting and revitalizing the Tharu culture. Tourism has not only fostered the flourishing of Tharu traditions but has also contributed to improved educational opportunities within the community. However, the study recognizes the influence of globalization in driving changes to Tharu customs and rituals, potentially leading to a new form of cultural colonization. In this context, homestay tourism emerges as a crucial tool for preserving and revitalizing the unique ethnic identity and traditions of the Amaltari Tharu community.

Keywords: homestay, tourism, Tharu culture, cultural revival, linguistic variations

Procedia PDF Downloads 4
3379 Older Adult Grandparents' Voices as a Principle Care Giver in a Skipped-Generation Family

Authors: Kerdsiri Hongthai, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

In Thailand, many adults in rural areas migrate to seek employ¬ment resulting in skipped-generation family where grandparents care for grandchildren with no other adults present. This is a preliminary study using qualitative case study methods, aimed to explore the situations of older adult grandparents' experiences in skipped-generation family in North-East of Thailand. Data were collected by in-depth inter¬views with 6 grandparents living in skipped-generation families; 5 females and 1 males grandparents, aged 62-75, some of them have diabetes mellitus, hypertension, during November to December, 2017. The finding themes are: ‘Caught up in the middle’: the older adults were pleased to have grandchildren but, at the same time, acknowledge the burden that this placed on them, especially when the migrant children failed to send enough money back to support the family. ‘Getting bad health’: they reported to be fatigued and stressed due to burden of caring for their grandchildren without support. This situation can aggravate problems of poor health status and be worsening economic status of the grandparents. In some cases of deprivation, the grandparents feel that having to be the sole care providers of their grandchildren can negative adversely affect their mental status. It is important to find out in other sectors similar to Thailand and lead to more in-depth research to answer the research questions about policy and social support in skipped-generation family in the future.

Keywords: older adult grandparents, experiences, principle care giver, skipped-generation family

Procedia PDF Downloads 121
3378 An Analysis of Brand-Building Characteristics in the Iran Airline Websites

Authors: Pedram Behyar, Zahra Bayat

Abstract:

The internet and web are changing ways of “far reaching scope and potential for transformation of the marketing functions”. The web is developing in a faster rate than any previous new communication medium. The website of destination has become a crucial branding channel, that is why all businesses are changing their way to communicate with their customers to encounter their needs and wants in better ways. Website provides numerous opportunities for businesses to strengthen their relationship with their customers. One of these opportunities is website component that enables internet users to make two-way communication with the businesses.

Keywords: marketing communication, brand image, usability, privacy and security, personalization and customization, responsiveness, customer online web experience

Procedia PDF Downloads 480
3377 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania

Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha

Abstract:

Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.

Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test

Procedia PDF Downloads 91
3376 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity

Authors: Md Fazlul Kader, Soo Young Shin

Abstract:

In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.

Keywords: cognitive relay, outage, interference limited, decode-and-forward (DF)

Procedia PDF Downloads 490
3375 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test

Authors: A. Khodabakhshi, A. Mortazavi

Abstract:

Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.

Keywords: deformation modulus, numerical model, plate loading test, rock mass

Procedia PDF Downloads 149
3374 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters

Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset

Abstract:

The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.

Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters

Procedia PDF Downloads 114
3373 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 321
3372 Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya

Authors: Maged El Osta, Milad Masoud

Abstract:

Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area.

Keywords: Eocene and Upper Cretaceous aquifers, rainfall, potentiality, Geographic Information System (GIS)

Procedia PDF Downloads 198
3371 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 147
3370 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 101
3369 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 428
3368 Development of a Comprehensive Energy Model for Canada

Authors: Matthew B. Davis, Amit Kumar

Abstract:

With potentially dangerous impacts of climate change on the horizon, Canada has an opportunity to take a lead role on the international stage to demonstrate how energy use intensity and greenhouse gas emission intensity may be effectively reduced. Through bottom-up modelling of Canada’s energy sector using Long-range Energy Alternative Planning (LEAP) software, it can be determined where efforts should to be concentrated to produce the most positive energy management results. By analyzing a provincially integrated Canada, one can develop strategies to minimize the country’s economic downfall while transitioning to lower-emission energy technologies. Canada’s electricity sector plays an important role in accommodating these transitionary technologies as fossil-fuel based power production is prevalent in many parts of the country and is responsible for a large portion (17%) of Canada’s greenhouse gas emissions. Current findings incorporate an in-depth model of Canada’s current energy supply and demand sectors, as well as a business-as-usual scenario up to the year 2035. This allows for in-depth analysis of energy flow from resource potential, to extraction, to fuel and electricity production, to energy end use and emissions in Canada’s residential, transportation, commercial, institutional, industrial, and agricultural sectors. Bottom-up modelling techniques such as these are useful to critically analyze and compare the various possible scenarios of implementing sustainable energy measures. This work can aid government in creating effective energy and environmental policies, as well as guide industry to what technology or process changes would be most worthwhile to pursue.

Keywords: energy management, LEAP, energy end-use, GHG emissions

Procedia PDF Downloads 284
3367 Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection

Authors: Anupriya, Bikramjit Sinfh, Radhay Shyam

Abstract:

In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag.

Keywords: total pressure loss, flame holder, supersonic combustion, combustion efficiency, cavity, nozzle

Procedia PDF Downloads 76
3366 Managing Shallow Gas for Offshore Platforms via Fit-For-Purpose Solutions: Case Study for Offshore Malaysia

Authors: Noorizal Huang, Christian Girsang, Mohamad Razi Mansoor

Abstract:

Shallow gas seepage was first spotted at a central processing platform offshore Malaysia in 2010, acknowledged as Platform T in this paper. Frequent monitoring of the gas seepage was performed through remotely operated vehicle (ROV) baseline survey and a comprehensive geophysical survey was conducted to understand the characteristics of the gas seepage and to ensure that the integrity of the foundation at Platform T was not compromised. The origin of the gas back then was unknown. A soil investigation campaign was performed in 2016 to study the origin of the gas seepage. Two boreholes were drilled; a composite borehole to 150m below seabed for the purpose of soil sampling and in-situ testing and a pilot hole to 155m below the seabed, which was later converted to a fit-for-purpose relief well as an alternate migration path for the gas. During the soil investigation campaign, dissipation tests were performed at several layers which were potentially the source or migration path for the gas. Five (5) soil samples were segregated for headspace test, to identify the gas type which subsequently can be used to identify the origin of the gas. Dissipation tests performed at four depth intervals indicates pore water pressure less than 20 % of the effective vertical stress and appear to continue decreasing if the test had not been stopped. It was concluded that a low to a negligible amount of excess pore pressure exist in clayey silt layers. Results from headspace test show presence of methane corresponding to the clayey silt layers as reported in the boring logs. The gas most likely comes from biogenic sources, feeding on organic matter in situ over a large depth range. It is unlikely that there are large pockets of gas in the soil due to its homogeneous clayey nature and the lack of excess pore pressure in other permeable clayey silt layers encountered. Instead, it is more likely that when pore water at certain depth encounters a more permeable path, such as a borehole, it rises up through this path due to the temperature gradient in the soil. As the water rises the pressure decreases, which could cause gases dissolved in the water to come out of solution and form bubbles. As a result, the gas will have no impact on the integrity of the foundation at Platform T. The fit-for-purpose relief well design as well as adopting headspace testing can be used to address the shallow gas issue at Platform T in a cost effective and efficient manners.

Keywords: dissipation test, headspace test, excess pore pressure, relief well, shallow gas

Procedia PDF Downloads 252