Search results for: assistive algorithms
1196 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 1711195 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data
Authors: Florin Leon
Abstract:
This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment
Procedia PDF Downloads 591194 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 1761193 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 1181192 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items
Authors: Wen-Chung Wang, Xue-Lan Qiu
Abstract:
Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison
Procedia PDF Downloads 2461191 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm
Authors: Seyedmahdi Mousavihashemi
Abstract:
One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design
Procedia PDF Downloads 4991190 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling
Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski
Abstract:
This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS
Procedia PDF Downloads 761189 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2881188 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1411187 Development of a Novel Ankle-Foot Orthotic Using a User Centered Approach for Improved Satisfaction
Authors: Ahlad Neti, Elisa Arch, Martha Hall
Abstract:
Studies have shown that individuals who use Ankle-Foot-Orthoses (AFOs) have a high level of dissatisfaction regarding their current AFOs. Studies point to the focus on technical design with little attention given to the user perspective as a source of AFO designs that leave users dissatisfied. To design a new AFO that satisfies users and thereby improves their quality of life, the reasons for their dissatisfaction and their wants and needs for an improved AFO design must be identified. There has been little research into the user perspective on AFO use and desired improvements, so the relationship between AFO design and satisfaction in daily use must be assessed to develop appropriate metrics and constraints prior to designing a novel AFO. To assess the user perspective on AFO design, structured interviews were conducted with 7 individuals (average age of 64.29±8.81 years) who use AFOs. All interviews were transcribed and coded to identify common themes using Grounded Theory Method in NVivo 12. Qualitative analysis of these results identified sources of user dissatisfaction such as heaviness, bulk, and uncomfortable material and overall needs and wants for an AFO. Beyond the user perspective, certain objective factors must be considered in the construction of metrics and constraints to ensure that the AFO fulfills its medical purpose. These more objective metrics are rooted in a common medical device market and technical standards. Given the large body of research concerning these standards, these objective metrics and constraints were derived through a literature review. Through these two methods, a comprehensive list of metrics and constraints accounting for both the user perspective on AFO design and the AFO’s medical purpose was compiled. These metrics and constraints will establish the framework for designing a new AFO that carries out its medical purpose while also improving the user experience. The metrics can be categorized into several overarching areas for AFO improvement. Categories of user perspective related metrics include comfort, discreteness, aesthetics, ease of use, and compatibility with clothing. Categories of medical purpose related metrics include biomechanical functionality, durability, and affordability. These metrics were used to guide an iterative prototyping process. Six concepts were ideated and compared using system-level analysis. From these six concepts, two concepts – the piano wire model and the segmented model – were selected to move forward into prototyping. Evaluation of non-functional prototypes of the piano wire and segmented models determined that the piano wire model better fulfilled the metrics by offering increased stability, longer durability, fewer points for failure, and a strong enough core component to allow a sock to cover over the AFO while maintaining the overall structure. As such, the piano wire AFO has moved forward into the functional prototyping phase, and healthy subject testing is being designed and recruited to conduct design validation and verification.Keywords: ankle-foot orthotic, assistive technology, human centered design, medical devices
Procedia PDF Downloads 1561186 Mathematical Programming Models for Portfolio Optimization Problem: A Review
Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad
Abstract:
Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches
Procedia PDF Downloads 3481185 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting
Procedia PDF Downloads 3891184 Engineering Optimization Using Two-Stage Differential Evolution
Authors: K. Y. Tseng, C. Y. Wu
Abstract:
This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.Keywords: differential evolution, Truss structure optimization, optimal chiller loading, modified binary differential evolution
Procedia PDF Downloads 1681183 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 3761182 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1881181 Low Complexity Deblocking Algorithm
Authors: Jagroop Singh Sidhu, Buta Singh
Abstract:
A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth
Procedia PDF Downloads 4621180 Hybrid Approach for the Min-Interference Frequency Assignment
Authors: F. Debbat, F. T. Bendimerad
Abstract:
The efficient frequency assignment for radio communications becomes more and more crucial when developing new information technologies and their applications. It is consists in defining an assignment of frequencies to radio links, to be established between base stations and mobile transmitters. Separation of the frequencies assigned is necessary to avoid interference. However, unnecessary separation causes an excess requirement for spectrum, the cost of which may be very high. This problem is NP-hard problem which cannot be solved by conventional optimization algorithms. It is therefore necessary to use metaheuristic methods to solve it. This paper proposes Hybrid approach based on simulated annealing (SA) and Tabu Search (TS) methods to solve this problem. Computational results, obtained on a number of standard problem instances, testify the effectiveness of the proposed approach.Keywords: cellular mobile communication, frequency assignment problem, optimization, tabu search, simulated annealing
Procedia PDF Downloads 3851179 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 801178 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients
Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz
Abstract:
In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software
Procedia PDF Downloads 3301177 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems
Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur
Abstract:
The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling
Procedia PDF Downloads 5531176 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 2421175 Numerical Analyze of Corona Discharge on HVDC Transmission Lines
Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj
Abstract:
This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.Keywords: corona discharge, finite element method, electric field, HVDC
Procedia PDF Downloads 4141174 Quality Fabric Optimization Using Genetic Algorithms
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile industry has been an important part of many developing countries economies such as Tunisia. This industry is confronted with a challenging and increasing competitive environment. Good quality management in production process is the key factor for retaining existence especially in raw material exploitation. The present work aims to develop an intelligent system for fabric inspection. In the first step, we have studied the method used for fabric control which takes into account the default length and localization in woven. In the second step, we have used a method based on the fuzzy logic to minimize the Demerit point indicator with appropriate total rollers length, so that the quality problem becomes multi-objective. In order to optimize the total fabric quality, we have applied the genetic algorithm (GA).Keywords: fabric control, Fuzzy logic, genetic algorithm, quality management
Procedia PDF Downloads 5911173 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules
Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez
Abstract:
Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems
Procedia PDF Downloads 4211172 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1891171 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method
Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari
Abstract:
In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.Keywords: artificial bee colony, cooperative, multilevel cooperation, vector
Procedia PDF Downloads 4461170 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9541169 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks
Authors: Si-Gwan Kim
Abstract:
In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait
Procedia PDF Downloads 1231168 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3741167 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 215