Search results for: alkyl-chain length
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2623

Search results for: alkyl-chain length

1693 Ventilator Associated Pneumonia in a Medical Intensive Care Unit, Incidence and Risk Factors: A Case Control Study

Authors: Ammar Asma, Bouafia Nabiha, Ben Cheikh Asma, Ezzi Olfa, Mahjoub Mohamed, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Ventilator-associated pneumonia (VAP) is currently recognized as one of the most relevant causes of morbidity and mortality among intensive care unit (ICU) patients worldwide. Identifying modifiable risk factors for VAP could be helpful for future controlled interventional studies aiming at improving prevention of VAP. The purposes of this study were to determine the incidence and risk factors for VAP in in a Tunisian medical ICU. Materials / Methods: A retrospective case-control study design based on the prospective database collected over a 14-month period from September 15th, 2015 through November 15th, 2016 in an 8-bed medical ICU. Patients under ventilation for over 48 h were included. The number of cases was estimated by Epi-info Software with the power of statistical test equal to 90 %. Each case patient was successfully matched to two controls according to the length of mechanical ventilation (MV) before VAP for cases and the total length of MV in controls. VAP in the ICU was defined according to American Thoracic Society; Infectious Diseases Society of America guidelines. Early onset or late-onset VAP were defined whether the infectious process occurred within or after 96 h of ICU admission. Patients’ risk factors, causes of admission, comorbidities and respiratory specimens collected were reviewed. Univariate and multivariate analyses were performed to determine variables associated with VAP with a p-value < 0.05. Results: During the period study, a total of 169 patients under mechanical ventilation were considered, 34 patients (20.11%) developed at least one episode of VAP in the ICU. The incidence rate for VAP was 14.88/1000 ventilation days. Among these cases, 9 (26.5 %) were early-onset VAP and 25 (73.5 %) were late-onset VAP. It was a certain diagnosis in 66.7% of cases. Tracheal aspiration was positive in 80% of cases. Multi-drug resistant Acinerobacter baumanii was the most common species detected in cases; 67.64% (n=23). The rate of mortality out of cases was 88.23% (n= 30). In univariate analysis, the patients with VAP were statistically more likely to suffer from cardiovascular diseases (p=0.035) and prolonged duration of sedation (p=0.009) and tracheostomy (p=0.001), they also had a higher number of re-intubation (p=0.017) and a longer total time of intubation (p=0.012). Multivariate analysis showed that cardiovascular diseases (OR= 4.44; 95% IC= [1.3 - 14]; p=0.016), tracheostomy (OR= 4.2; 95% IC= [1.16 -15.12]; p= 0.028) and prolonged duration of sedation (OR=1.21; 95% IC= [1.07, 1.36]; p=0.002) were independent risk factors for the development of VAP. Conclusion: VAP constitutes a therapeutic challenge in an ICU setting, therefore; strategies that effectively prevent VAP are needed. An infection control-training program intended to all professional heath care in this unit insisting on bundles and elaboration of procedures are planned to reduce effectively incidence rate of VAP.

Keywords: case control study, intensive care unit, risk factors, ventilator associated pneumonia

Procedia PDF Downloads 386
1692 Novel Coprocessor for DNA Sequence Alignment in Resequencing Applications

Authors: Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, Fayez Gebali

Abstract:

This paper presents a novel semi-systolic array architecture for an optimized parallel sequence alignment algorithm. This architecture has the advantage that it can be modified to be reused for multiple pass processing in order to increase the number of processing elements that can be packed into a single FPGA and to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential problem of many FPGA resources left unused for designs that have large values of short read length. When using the previously published conventional hardware design. FPGA implementation results show that, for large values of short read lengths (M>128), the proposed design has a slightly higher speed up and FPGA utilization over the the conventional one.

Keywords: bioinformatics, genome sequence alignment, re-sequencing applications, systolic array

Procedia PDF Downloads 517
1691 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct

Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez

Abstract:

Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.

Keywords: PIV, annular duct, laminar, turbulence, velocity profile

Procedia PDF Downloads 332
1690 Heavy Metals (Pb, Cu, Fe, and Zn) Level in Shellfish (Etheria elliptica), Water, and Sediments of River Ogbese, Ondo State, Nigeria

Authors: O. O. Olawusi-Peters, O. E. Aguda, F. O. Okoye

Abstract:

Investigations on the accumulation of heavy metals in water and sediments of River Ogbese were carried out between December 2010 and February 2011 using Atomic Absorption Spectrophotometer. Etheria elliptica a sessile organism was also used to determine the concentration of heavy metal in the aquatic environmental. In water, Cu had the highest concentration (0.55–0.13 mg/l ±0.1) while in sediments, the highest value obtained was in Fe (1.46-3.89mg/l±0.27). The minimum concentrations recorded were in Pb; which was below detectable level. The result also revealed that the shell accumulated more heavy metals than the flesh of the mussel with Cu in the shell exhibiting a negative correlation with all the metals in the flesh. However, the condition factor (K) value is 6.44, an indication of good health. The length-weight relationship is expressed as W=-0.48xL 1.94 (r2=0.29) showing the growth pattern to be negatively allometric.

Keywords: condition factor, Etheria elliptica, heavy metals, River Ogbese

Procedia PDF Downloads 464
1689 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 530
1688 Performances of Two-Segment Crash Box with Holes under Oblique Load

Authors: Moch Agus Choiron

Abstract:

Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models.

Keywords: crash Box, two-segments, holes configuration, oblique load, deformation pattern

Procedia PDF Downloads 348
1687 Assessment of the Ecological Tragedy on Lake Chad

Authors: Luke Onyekakeyah, Cynthia Onyekakeyah

Abstract:

The conflict in Northeastern Nigeria could mar local and international efforts to salvage the drying Lake Chad, which at present is merely 20 per cent of its original size. The conflict which began in 2009, assumed a monstrous dimension to the extent that any prospects of a redeeming action on the Lake is bleak. The concern of the authorities in the basin countries is how to bring the conflict to an end in the interest of the ecologically-dependent riparian population. Lake Chad is Africa’s fourth largest lake. From a previous 388,500 km2 some 600, 000 years ago, the Lake has shrunk to a maximum length of 25,000 km2. During the last four decades, the Lake has been susceptible to increasing variability and irregular rainfall. Dry spell, excessive evaporation and sandstorm have adversely affected the Lake, such that a 2001 estimate put the Lake to a meager 19,000 km2. Given the critical importance of the Lake as a source of livelihood for over 20 million people, there is mounting concern that an unprecedented human and ecological catastrophe is unfolding, should the Lake eventually dries up. The study evaluates the Lake Chad and how the conflict has adversely impacted it.

Keywords: lake chad, conflict, salvage, Nigeria

Procedia PDF Downloads 212
1686 MHC Class II DRB1 Gene Polymorphism in Lori Sheep Breed

Authors: Shahram Nanekarani, Majid Goodarzi, Majid Khosravi

Abstract:

The present study aimed at analyzing of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon in Lori Sheep breed. The MHC plays a central role in the control of disease resistance and immunological response. Genomic DNA from blood samples of 124 sheep was extracted and a 296 bp MHC exon 2 fragment was amplified using polymerase chain reaction. PCR products were characterized by the restriction fragment length polymorphism technique using Hin1I restriction enzyme. The PCRRFLP patterns showed three genotypes, AA, AB and BB with frequency of 0.282, 0.573 and 0.145, respectively. There was no significant (P > 0.05) deviation from Hardy–Weinberg equilibrium for this locus in this population. The results of the present study indicate that exon 2 of the Ovar-DRB1 gene is highly polymorphic in Lori sheep and could be considered as an important marker assisted selection, for improvement of immunity in sheep.

Keywords: MHC-DRB1 gene, polymorphism, PCR-RFLP, lori sheep

Procedia PDF Downloads 392
1685 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images

Authors: M. Vimal Raj, S. Sakthivel Murugan

Abstract:

Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.

Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater

Procedia PDF Downloads 167
1684 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi, B. Guedim

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precracked (orientation of the crack 0°, 45°, and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: polymer matrix, glasses, fracture, precracks

Procedia PDF Downloads 331
1683 Dependence of Shaft Stiffness on the Crack Location

Authors: H. M. Mobarak, Helen Wu, Chunhui Yang

Abstract:

In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.

Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force

Procedia PDF Downloads 295
1682 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures

Authors: Yangsu Kwon, Hyo-Gyoung Kwak

Abstract:

Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.

Keywords: bond-slip, prestressed concrete, tendon, ultimate strength

Procedia PDF Downloads 483
1681 Prevention of Preterm Birth and Management of Uterine Contractions with Traditional Korean Medicine: Integrative Approach

Authors: Eun-Seop Kim, Eun-Ha Jang, Rana R. Kim, Sae-Byul Jang

Abstract:

Objective: Preterm labor is the most common antecedent of preterm birth(PTB), which is characterized by regular uterine contraction before 37 weeks of pregnancy and cervical change. In acute preterm labor, tocolytics are administered as the first-line medication to suppress uterine contractions but rarely delay pregnancy to 37 weeks of gestation. On the other hand, according to the Korean Traditional Medicine, PTB is caused by the deficiency of Qi and unnecessary energy in the body of the mother. The aim of this study was to demonstrate the benefit of Traditional Korean Medicine as an adjuvant therapy in management of early uterine contractions and the prevention of PTB. Methods: It is a case report of a 38-year-old woman (0-0-6-0) hospitalized for irregular uterine contractions and cervical change at 33+3/7 weeks of gestation. Past history includes chemical pregnancies achieved by Artificial Rroductive Technology(ART), one stillbirth (at 7 weeks) and a laparoscopic surgery for endometriosis. After seven trials of IVF and articificial insemination, she had succeeded in conception via in-vitro fertilization (IVF) with help of Traditional Korean Medicine (TKM) treatments. Due to irregular uterine contractions and cervical changes, 2 TKM were prescribed: Gami-Dangguisan, and Antae-eum, known to nourish blood and clear away heat. 120ml of Gami-Dangguisan was given twice a day monring and evening along with same amount of Antae-eum once a day from 31 August 2013 to 28 November 2013. Tocolytics (Ritodrine) was administered as a first aid for maintenance of pregnancy. Information regarding progress until the delivery was collected during the patient’s visit. Results: On admission, the cervix of 15mm in length and cervical os with 0.5cm-dilated were observed via ultrasonography. 50% cervical effacement was also detected in physical examination. Tocolysis had been temporarily maintained. As a supportive therapy, TKM herbal preparations(gami-dangguisan and Antae-eum) were concomitantly given. As of 34+2/7 weeks of gestation, however intermittent uterine contractions appeared (5-12min) on cardiotocography and vaginal bleeding was also smeared at 34+3/7 weeks. However, enhanced tocolytics and continuous administration of herbal medicine sustained the pregnancy to term. At 37+2/7 weeks, no sign of labor with restored cervical length was confirmed. The woman gave a term birth to a healthy infant via vaginal delivery at 39+3/7 gestational weeks. Conclusions: This is the first successful case report about a preter labor patient administered with conventional tocolytic agents as well as TKM herbal decoctions, delaying delivery to term. This case deserves attention considering it is rare to maintain gestation to term only with tocolytic intervention. Our report implies the potential of herbal medicine as an adjuvant therapy for preterm labor treatment. Further studies are needed to assess the safety and efficacy of TKM herbal medicine as a therapeutic alternative for curing preterm birth.

Keywords: preterm labor, traditional Korean medicine, herbal medicine, integrative treatment, complementary and alternative medicine

Procedia PDF Downloads 357
1680 Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application

Authors: Anjan Sil, Rajni Sharma, Subrata Ray

Abstract:

The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 µm and 200-600 nm, respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA).

Keywords: polymer electrolytes, CNFs, ionic conductivity, TGA

Procedia PDF Downloads 363
1679 Effect of Normal Deformation on the Stability of Sandwich Beams Simply Supported Using a Refined Four-Variable Beam Theory

Authors: R. Bennai, M. Nebab, H. Ait Atmane, B. Ayache, H. Fourn

Abstract:

In this work, a study of the stability of a functionally graduated sandwiches beam using a refined theory of hyperbolic shear deformation of a beam was developed. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. In order to examine the present model, illustrative examples are presented to show the effects of changes in different parameters such as the material graduation, the stretching effect of the thickness and thickness ratio –length on the buckling of FGM sandwich beams.

Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling, boundary conditions

Procedia PDF Downloads 172
1678 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: concrete, mineral admixture, hydration, structure

Procedia PDF Downloads 321
1677 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses

Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.

Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization

Procedia PDF Downloads 143
1676 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion

Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi

Abstract:

Effect of 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in the study, in order to improve the peak efficiency and the stall characteristics. The aim of the use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from mean radius to tip. The proposed blade profiles in the study are NACA0015 from hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e. the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.

Keywords: fluid machinery, ocean engineering, stall, wave energy conversion, wells turbine

Procedia PDF Downloads 293
1675 Experimental Investigation of R600a as a Retrofit for R134a in a Household Refrigerator

Authors: T. O Babarinde, F. A Oyawale, O. S Ohunakin, R. O Ohunakin, R. O Leramo D.S Adelekan

Abstract:

This paper presents an experimental study of R600a, environment-friendly refrigerants with low global warming potential (GWP), zero ozone depletion potential (ODP), as a substitute for R134a in domestic refrigerator. A refrigerator designed to work with R134a was used for this experiment, the capillary for this experiment was not varied at anytime during the experiment. 40, 60, 80g, charge of R600a were tested against 100 g of R134a under the designed capillary length of the refrigerator, and the performance using R600a was evaluated and compared with its performance when R134a was used. The results obtained showed that the design temperature and pull-down time set by International Standard Organisation (ISO) for small refrigerator was achieved using both 80g of R600a and 100g of R134a but R134a has earlier pulled down time than using R600a. The average coefficient of performance (COP) obtained using R600a is 17.7% higher than that of R134a while the average power consumption is 42.5 % lower than R134a, which shows that R600a can be used as replacement for R134a in domestic refrigerator without necessarily need to modified the capillary.

Keywords: domestic refrigerator, experimental, R600a, R134a

Procedia PDF Downloads 510
1674 Analysis of Exponential Nonuniform Transmission Line Parameters

Authors: Mounir Belattar

Abstract:

In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.

Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series

Procedia PDF Downloads 430
1673 Direct Integration of 3D Ultrasound Scans with Patient Educational Mobile Application

Authors: Zafar Iqbal, Eugene Chan, Fareed Ahmed, Mohamed Jama, Avez Rizvi

Abstract:

Advancements in Ultrasound Technology have enabled machines to capture 3D and 4D images with intricate features of the growing fetus. Sonographers can now capture clear 3D images and 4D videos of the fetus, especially of the face. Fetal faces are often seen on the ultrasound scan of the third trimester where anatomical features become more defined. Parents often want 3D/4D images and videos of their ultrasounds, and particularly image that capture the child’s face. Sidra Medicine developed a patient education mobile app called 10 Moons to improve care and provide useful information during the length of their pregnancy. In addition to general information, we built the ability to send ultrasound images directly from the modality to the mobile application, allowing expectant mothers to easily store and share images of their baby. 10 Moons represent the length of the pregnancy on a lunar calendar, which has both cultural and religious significance in the Middle East. During the third trimester scan, sonographers can capture 3D pictures of the fetus. Ultrasound machines are connected with a local 10 Moons Server with a Digital Imaging and Communications in Medicine (DICOM) application running on it. Sonographers are able to send images directly to the DICOM server by a preprogrammed button on the ultrasound modality. Mothers can also request which pictures they would like to be available on the app. An internally built DICOM application receives the image and saves the patient information from DICOM header (for verification purpose). The application also anonymizes the image by removing all the DICOM header information and subsequently converts it into a lossless JPEG. Finally, and the application passes the image to the mobile application server. On the 10 Moons mobile app – patients enter their Medical Record Number (MRN) and Date of Birth (DOB) to receive a One Time Password (OTP) for security reasons to view the images. Patients can also share the images anonymized images with friends and family. Furthermore, patients can also request 3D printed mementos of their child through 10 Moons. 10 Moons is unique patient education and information application where expected mothers can also see 3D ultrasound images of their children. Sidra Medicine staff has the added benefit of a full content management administrative backend where updates to content can be made. The app is available on secure infrastructure with both local and public interfaces. The application is also available in both English and Arabic languages to facilitate most of the patients in the region. Innovation is at the heart of modern healthcare management. With Innovation being one of Sidra Medicine’s core values, our 10 Moons application provides expectant mothers with unique educational content as well as the ability to store and share images of their child and purchase 3D printed mementos.

Keywords: patient educational mobile application, ultrasound images, digital imaging and communications in medicine (DICOM), imaging informatics

Procedia PDF Downloads 117
1672 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent.

Keywords: fibre reinforced polymer, FRP, single shear test, bond thickness, bond strength

Procedia PDF Downloads 218
1671 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs

Authors: Regina A. Tayong, Reza Barati

Abstract:

A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.

Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation

Procedia PDF Downloads 115
1670 Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages

Authors: Evangelos Kaisar, Anika Tabassum, Taraneh Ardalan, Majed Al-Ghandour

Abstract:

The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other.

Keywords: At-grade intersection, simulation, turbo-roundabout, two-lane roundabout

Procedia PDF Downloads 134
1669 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: heat pipe, inclination, optimization, ratio

Procedia PDF Downloads 318
1668 Slug Initiation Evaluation in Long Horizontal Channels Experimentally

Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi

Abstract:

In this paper, the effects of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cmx10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.

Keywords: liquid holdup, long horizontal channel, slug initiation position, superficial inlet velocity

Procedia PDF Downloads 255
1667 Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices

Authors: Shubham Jaiswal

Abstract:

In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term.

Keywords: two-dimensional solute transport system, spectral collocation method, Chebyshev polynomials, Chebyshev differentiation matrix

Procedia PDF Downloads 222
1666 Mathematical Modeling of Skin Condensers for Domestic Refrigerator

Authors: Nitin Ghule, S. G. Taji

Abstract:

A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.

Keywords: condenser, domestic refrigerator, heat transfer, mathematical model

Procedia PDF Downloads 444
1665 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 322
1664 Modeling the Transport of Charge Carriers in the Active Devices MESFET Based of GaInP by the Monte Carlo Method

Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi

Abstract:

The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, GaInP

Procedia PDF Downloads 409