Search results for: EEG signals
61 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells
Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez
Abstract:
Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation
Procedia PDF Downloads 24960 Safety Profile of Human Papillomavirus Vaccines: A Post-Licensure Analysis of the Vaccine Adverse Events Reporting System, 2007-2017
Authors: Giulia Bonaldo, Alberto Vaccheri, Ottavio D'Annibali, Domenico Motola
Abstract:
The Human Papilloma Virus (HPV) was shown to be the cause of different types of carcinomas, first of all of the cervical intraepithelial neoplasia. Since the early 80s to today, thanks first to the preventive screening campaigns (pap-test) and following to the introduction of HPV vaccines on the market; the number of new cases of cervical cancer has decreased significantly. The HPV vaccines currently approved are three: Cervarix® (HPV2 - virus type: 16 and 18), Gardasil® (HPV4 - 6, 11, 16, 18) and Gardasil 9® (HPV9 - 6, 11, 16, 18, 31, 33, 45, 52, 58), which all protect against the two high-risk HPVs (6, 11) that are mainly involved in cervical cancers. Despite the remarkable effectiveness of these vaccines has been demonstrated, in the recent years, there have been many complaints about their risk-benefit profile due to Adverse Events Following Immunization (AEFI). The purpose of this study is to provide a support about the ongoing discussion on the safety profile of HPV vaccines based on real life data deriving from spontaneous reports of suspected AEFIs collected in the Vaccine Adverse Events Reporting System (VAERS). VAERS is a freely-available national vaccine safety surveillance database of AEFI, co-administered by the Centers for Disease Control and Prevention (CDC) and Food and Drug Administration (FDA). We collected all the reports between January 2007 to December 2017 related to the HPV vaccines with a brand name (HPV2, HPV4, HPV9) or without (HPVX). A disproportionality analysis using Reporting Odds Ratio (ROR) with 95% confidence interval and p value ≤ 0.05 was performed. Over the 10-year period, 54889 reports of AEFI related to HPV vaccines reported in VAERS, corresponding to 224863 vaccine-event pairs, were retrieved. The highest number of reports was related to Gardasil (n = 42244), followed by Gardasil 9 (7212) and Cervarix (3904). The brand name of the HPV vaccine was not reported in 1529 cases. The two events more frequently reported and statistically significant for each vaccine were: dizziness (n = 5053) ROR = 1.28 (CI95% 1.24 – 1.31) and syncope (4808) ROR = 1.21 (1.17 – 1.25) for Gardasil. For Gardasil 9, injection site pain (305) ROR = 1.40 (1.25 – 1.57) and injection site erythema (297) ROR = 1.88 (1.67 – 2.10) and for Cervarix, headache (672) ROR = 1.14 (1.06 – 1.23) and loss of consciousness (528) ROR = 1.71 (1.57 – 1.87). In total, we collected 406 reports of death and 2461 cases of permanent disability in the ten-year period. The events consisting of incorrect vaccine storage or incorrect administration were not considered. The AEFI analysis showed that the most frequently reported events are non-serious and listed in the corresponding SmPCs. In addition to these, potential safety signals arose regarding less frequent and severe AEFIs that would deserve further investigation. This already happened with the referral of the European Medicines Agency (EMA) for the adverse events POTS (Postural Orthostatic Tachycardia Syndrome) and CRPS (Complex Regional Pain Syndrome) associated with anti-papillomavirus vaccines.Keywords: adverse drug reactions, pharmacovigilance, safety, vaccines
Procedia PDF Downloads 16359 Platform Virtual for Joint Amplitude Measurement Based in MEMS
Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez
Abstract:
Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation
Procedia PDF Downloads 25958 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia
Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas
Abstract:
The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants
Procedia PDF Downloads 56157 Wound Healing Process Studied on DC Non-Homogeneous Electric Fields
Authors: Marisa Rio, Sharanya Bola, Richard H. W. Funk, Gerald Gerlach
Abstract:
Cell migration, wound healing and regeneration are some of the physiological phenomena in which electric fields (EFs) have proven to have an important function. Physiologically, cells experience electrical signals in the form of transmembrane potentials, ion fluxes through protein channels as well as electric fields at their surface. As soon as a wound is created, the disruption of the epithelial layers generates an electric field of ca. 40-200 mV/mm, directing cell migration towards the wound site, starting the healing process. In vitro electrotaxis, experiments have shown cells respond to DC EFs polarizing and migrating towards one of the poles (cathode or anode). A standard electrotaxis experiment consists of an electrotaxis chamber where cells are cultured, a DC power source and agar salt bridges that help delaying toxic products from the electrodes to attain the cell surface. The electric field strengths used in such an experiment are uniform and homogeneous. In contrast, the endogenous electric field strength around a wound tend to be multi-field and non-homogeneous. In this study, we present a custom device that enables electrotaxis experiments in non-homogeneous DC electric fields. Its main feature involves the replacement of conventional metallic electrodes, separated from the electrotaxis channel by agarose gel bridges, through electrolyte-filled microchannels. The connection to the DC source is made by Ag/AgCl electrodes, incased in agarose gel and placed at the end of each microfluidic channel. An SU-8 membrane closes the fluidic channels and simultaneously serves as the single connection from each of them to the central electrotaxis chamber. The electric field distribution and current density were numerically simulated with the steady-state electric conduction module from ANSYS 16.0. Simulation data confirms the application of nonhomogeneous EF of physiological strength. To validate the biocompatibility of the device cellular viability of the photoreceptor-derived 661W cell line was accessed. The cells have not shown any signs of apoptosis, damage or detachment during stimulation. Furthermore, immunofluorescence staining, namely by vinculin and actin labelling, allowed the assessment of adhesion efficiency and orientation of the cytoskeleton, respectively. Cellular motility in the presence and absence of applied DC EFs was verified. The movement of individual cells was tracked for the duration of the experiments, confirming the EF-induced, cathodal-directed motility of the studied cell line. The in vitro monolayer wound assay, or “scratch assay” is a standard protocol to quantitatively access cell migration in vitro. It encompasses the growth of a confluent cell monolayer followed by the mechanic creation of a scratch, representing a wound. Hence, wound dynamics was monitored over time and compared for control and applied the electric field to quantify cellular population motility.Keywords: DC non-homogeneous electric fields, electrotaxis, microfluidic biochip, wound healing
Procedia PDF Downloads 27056 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells
Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau
Abstract:
Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability
Procedia PDF Downloads 7255 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 13754 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps
Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev
Abstract:
The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.Keywords: computing experiment, hydroelasticity, physical experiment, vibration
Procedia PDF Downloads 24453 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway
Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi
Abstract:
Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig
Procedia PDF Downloads 12952 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 7851 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration
Authors: S. J. Addinell, T. Richard, B. Evans
Abstract:
The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis
Procedia PDF Downloads 22950 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women
Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar
Abstract:
Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.Keywords: chemerin, aerobic training, lipid profile, obese women
Procedia PDF Downloads 48949 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 20848 Negative Environmental Impacts on Marine Seismic Survey Activities
Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora
Abstract:
Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation
Procedia PDF Downloads 18547 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 16246 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection
Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip
Abstract:
Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people
Procedia PDF Downloads 2245 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor
Procedia PDF Downloads 32744 The Analgesic Effect of Electroacupuncture in a Murine Fibromyalgia Model
Authors: Bernice Jeanne Lottering, Yi-Wen Lin
Abstract:
Introduction: Chronic pain has a definitive lack of objective parameters in the measurement and treatment efficacy of diseases such as Fibromyalgia (FM). Persistent widespread pain and generalized tenderness are the characteristic symptoms affecting a large majority of the global population, particularly females. This disease has indicated a refractory tendency to conventional treatment ventures, largely resultant from a lack of etiological and pathogenic understanding of the disease development. Emerging evidence indicates that the central nervous system (CNS) plays a critical role in the amplification of pain signals and the neurotransmitters associated therewith. Various stimuli have been found to activate the channels existent on nociceptor terminals, thereby actuating nociceptive impulses along the pain pathways. The transient receptor potential vanalloid 1 (TRPV1) channel functions as a molecular integrator for numerous sensory inputs, such as nociception, and was explored in the current study. Current intervention approaches face a multitude challenges, ranging from effective therapeutic interventions to the limitation of pathognomonic criteria resultant from incomplete understanding and partial evidence on the mechanisms of action of FM. It remains unclear whether electroacupuncture (EA) plays an integral role in the functioning of the TRPV1 pathway, and whether or not it can reduce the chronic pain induced by FM. Aims: The aim of this study was to explore the mechanisms underlying the activation and modulation of the TRPV1 channel pathway in a cold stress model of FM applied to a murine model. Furthermore, the effect of EA in the treatment of mechanical and thermal pain, as expressed in FM was also to be investigated. Methods: 18 C57BL/6 wild type and 6 TRPV1 knockout (KO) mice, aged 8-12 weeks, were exposed to an intermittent cold stress-induced fibromyalgia-like pain model, with or without EA treatment at ZusanLi ST36 (2Hz/20min) on day 3 to 5. Von Frey and Hargreaves behaviour tests were implemented in order to analyze the mechanical and thermal pain thresholds on day 0, 3 and 5 in control group (C), FM group (FM), FM mice with EA treated group (FM + EA) and FM in KO group. Results: An increase in mechanical and thermal hyperalgesia was observed in the FM, EA and KO groups when compared to the control group. This initial increase was reduced in the EA group, which directs focus at the treatment efficacy of EA in nociceptive sensitization, and the analgesic effect EA has attenuating FM associated pain. Discussion: An increase in the nociceptive sensitization was observed through higher withdrawal thresholds in the von Frey mechanical test and the Hargreaves thermal test. TRPV1 function in mice has been scientifically associated with these nociceptive conduits, and the increased behaviour test results suggest that TRPV1 upregulation is central to the FM induced hyperalgesia. This data was supported by the decrease in sensitivity observed in results of the TRPV1 KO group. Moreover, the treatment of EA showed a decrease in this FM induced nociceptive sensitization, suggesting TRPV1 upregulation and overexpression can be attenuated by EA at bilateral ST36. This evidence compellingly implies that the analgesic effect of EA is associated with TRPV1 downregulation.Keywords: fibromyalgia, electroacupuncture, TRPV1, nociception
Procedia PDF Downloads 13943 Efficacy of Sparganium stoloniferum–Derived Compound in the Treatment of Acne Vulgaris: A Pilot Study
Authors: Wanvipa Thongborisute, Punyaphat Sirithanabadeekul, Pichit Suvanprakorn, Anan Jiraviroon
Abstract:
Background: Acne vulgaris is one of the most common dermatologic problems, and can have a significant psychological and physical effect on patients. Propionibacterium acnes' roles in acne vulgaris involve the activation of toll-like receptor 4 (TLR4), and toll-like receptor 2 (TLR2) pathways. By activating these pathways, inflammatory events of acne lesions, comedogenesis and sebaceous lipogenesis can occur. Currently, there are several topical agents commonly use in treating acne vulgaris that are known to have an effect on TLRs, such as retinoic acid and adapalene, but these drugs still have some irritating effects. At present, there is an alarming increase in rate of bacterial resistance due to irrational used of antibiotics both orally and topically. For this reason, acne treatments should contain bioactive molecules targeting at the site of action for the most effective therapeutic effect with the least side effects. Sparganium stoloniferumis a Chinese aquatic herb containing a compound called Sparstolonin B (SsnB), which has been reported to selectively blocks Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4)-mediated inflammatory signals. Therefore, this topical TLR2 and TLR4 antagonist, in a form of Sparganium stoloniferum-derived compound containing SsnB, should give a benefit in reducing inflammation of acne vulgaris lesions and providing an alternative treatments for patients with this condition. Materials and Methods: The objectives of this randomized double blinded split faced placebo controlled trial is to study the safety and efficacy of the Sparganium stoloniferum-derived compound. 32 volunteered patients with mild to moderate degree of acne vulgaris according to global acne grading system were included in the study. After being informed and consented the subjects were given 2 topical treatments for acne vulgaris, one being topical 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) and the other, placebo. The subjects were asked to apply each treatment to either half of the face daily morning and night by randomization for 8 weeks, and come in for a weekly follow up. For each visit, the patients went through a procedure of lesion counting, including comedones, papules, nodules, pustules, and cystic lesions. Results: During 8 weeks of experimentation, the result shows a reduction in total lesions number between the placebo and the treatment side show statistical significance starting at week 4, where the 95% confidence interval begin to no longer overlap, and shows a trend of continuing to be further apart. The decrease in the amount of total lesions between week 0 and week 8 of the placebo side shows no statistical significant at P value >0.05. While the decrease in the amount of total lesions of acne vulgaris of the treatment side comparing between week 0 and week 8 shows statistical significant at P value <0.001. Conclusion: The data demonstrates that 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) is more effective in treating acne vulgaris comparing to topical placebo in treating acne vulgaris, by showing significant reduction in the total numbers of acne lesions. Therefore, this topical Sparganium stoloniferum extraction could become a potential alternative treatment for acne vulgaris.Keywords: acne vulgaris, sparganium stoloniferum, sparstolonin B, toll-like receptor 2, toll-like receptor 4
Procedia PDF Downloads 18742 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique
Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song
Abstract:
For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the designKeywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter
Procedia PDF Downloads 33841 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density
Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita
Abstract:
Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite
Procedia PDF Downloads 10440 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 47339 Relationship Between Brain Entropy Patterns Estimated by Resting State fMRI and Child Behaviour
Authors: Sonia Boscenco, Zihan Wang, Euclides José de Mendoça Filho, João Paulo Hoppe, Irina Pokhvisneva, Geoffrey B.C. Hall, Michael J. Meaney, Patricia Pelufo Silveira
Abstract:
Entropy can be described as a measure of the number of states of a system, and when used in the context of physiological time-based signals, it serves as a measure of complexity. In functional connectivity data, entropy can account for the moment-to-moment variability that is neglected in traditional functional magnetic resonance imaging (fMRI) analyses. While brain fMRI resting state entropy has been associated with some pathological conditions like schizophrenia, no investigations have explored the association between brain entropy measures and individual differences in child behavior in healthy children. We describe a novel exploratory approach to evaluate brain fMRI resting state data in two child cohorts, and MAVAN (N=54, 4.5 years, 48% males) and GUSTO (N = 206, 4.5 years, 48% males) and its associations to child behavior, that can be used in future research in the context of child exposures and long-term health. Following rs-fMRI data pre-processing and Shannon entropy calculation across 32 network regions of interest to acquire 496 unique functional connections, partial correlation coefficient analysis adjusted for sex was performed to identify associations between entropy data and Strengths and Difficulties questionnaire in MAVAN and Child Behavior Checklist domains in GUSTO. Significance was set at p < 0.01, and we found eight significant associations in GUSTO. Negative associations were found between two frontoparietal regions and cerebellar posterior and oppositional defiant problems, (r = -0.212, p = 0.006) and (r = -0.200, p = 0.009). Positive associations were identified between somatic complaints and four default mode connections: salience insula (r = 0.202, p < 0.01), dorsal attention intraparietal sulcus (r = 0.231, p = 0.003), language inferior frontal gyrus (r = 0.207, p = 0.008) and language posterior superior temporal gyrus (r = 0.210, p = 0.008). Positive associations were also found between insula and frontoparietal connection and attention deficit / hyperactivity problems (r = 0.200, p < 0.01), and insula – default mode connection and pervasive developmental problems (r = 0.210, p = 0.007). In MAVAN, ten significant associations were identified. Two positive associations were found = with prosocial scores: the salience prefrontal cortex and dorsal attention connection (r = 0.474, p = 0.005) and the salience supramarginal gyrus and dorsal attention intraparietal sulcus (r = 0.447, p = 0.008). The insula and prefrontal connection were negatively associated with peer problems (r = -0.437, p < 0.01). Conduct problems were negatively associated with six separate connections, the left salience insula and right salience insula (r = -0.449, p = 0.008), left salience insula and right salience supramarginal gyrus (r = -0.512, p = 0.002), the default mode and visual network (r = -0.444, p = 0.009), dorsal attention and language network (r = -0.490, p = 0.003), and default mode and posterior parietal cortex (r = -0.546, p = 0.001). Entropy measures of resting state functional connectivity can be used to identify individual differences in brain function that are correlated with variation in behavioral problems in healthy children. Further studies applying this marker into the context of environmental exposures are warranted.Keywords: child behaviour, functional connectivity, imaging, Shannon entropy
Procedia PDF Downloads 20238 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine
Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski
Abstract:
The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization
Procedia PDF Downloads 38637 How Obesity Sparks the Immune System and Lessons from the COVID-19 Pandemic
Authors: Husham Bayazed
Abstract:
Purpose of Presentation: Obesity and overweight are among the biggest health challenges of the 21st century, according to the WHO. Obviously, obese individuals suffer different courses of disease – from infections and allergies to cancer- and even respond differently to some treatment options. Of note, obesity often seems to predispose and triggers several secondary diseases such as diabetes, arteriosclerosis, or heart attacks. Since decades it seems that immunological signals gear inflammatory processes among obese individuals with the aforementioned conditions. This review aims to shed light how obesity sparks or rewire the immune system and predisposes to such unpleasant health outcomes. Moreover, lessons from the Covid-19 pandemic ascertain that people living with pre-existing conditions such as obesity can develop severe acute respiratory syndrome (SARS), which needs to be elucidated how obesity and its adjuvant inflammatory process distortion contribute to enhancing severe COVID-19 consequences. Recent Findings: In recent clinical studies, obesity was linked to alter and sparks the immune system in different ways. Adipose tissue (AT) is considered as a secondary immune organ, which is a reservoir of tissue-resident of different immune cells with mediator release, making it a secondary immune organ. Adipocytes per se secrete several pro-inflammatory cytokines (IL-6, IL-4, MCP-1, and TNF-α ) involved in activation of macrophages resulting in chronic low-grade inflammation. The correlation between obesity and T cells dysregulation is pivotal in rewiring the immune system. Of note, autophagy occurrence in adipose tissues further rewire the immune system due to flush and outburst of leptin and adiponectin, which are cytokines and influencing pro-inflammatory immune functions. These immune alterations among obese individuals are collectively incriminated in triggering several metabolic disorders and playing role in increasing cancers incidence and susceptibility to different infections. During COVID-19 pandemic, it was verified that patients with pre-existing obesity being at greater risk of suffering severe and fatal clinical outcomes. Beside obese people suffer from increased airway resistance and reduced lung volume, ACE2 expression in adipose tissue seems to be high and even higher than that in lungs, which spike infection incidence. In essence, obesity with pre-existence of pro-inflammatory cytokines such as LI-6 is a risk factor for cytokine storm and coagulopathy among COVID-19 patients. Summary: It is well documented that obesity is associated with chronic systemic low-grade inflammation, which sparks and alter different pillars of the immune system and triggers different metabolic disorders, and increases susceptibility of infections and cancer incidence. The pre-existing chronic inflammation in obese patients with the augmented inflammatory response against the viral infection seems to increase the susceptibility of these patients to developing severe COVID-19. Although the new weight loss drugs and bariatric surgery are considered as breakthrough news for obesity treatment, but preventing is easier than treating it once it has taken hold. However, obesity and immune system link new insights dispute the role of immunotherapy and regulating immune cells treating diet-induced obesity.Keywords: immunity, metabolic disorders, cancer, COVID-19
Procedia PDF Downloads 7436 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16935 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features
Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski
Abstract:
The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation
Procedia PDF Downloads 11534 Manual Wheelchair Propulsion Efficiency on Different Slopes
Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse
Abstract:
In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion
Procedia PDF Downloads 29033 The Development of Wind Energy and Its Social Acceptance: The Role of Income Received by Wind Farm Owners, the Case of Galicia, Northwest Spain
Authors: X. Simon, D. Copena, M. Montero
Abstract:
The last decades have witnessed a significant increase in renewable energy, especially wind energy, to achieve sustainable development. Specialized literature in this field has carried out interesting case studies to extensively analyze both the environmental benefits of this energy and its social acceptance. However, to the best of our knowledge, work to date makes no analysis of the role of private owners of lands with wind potential within a broader territory of strong wind implantation, nor does it estimate their economic incomes relating them to social acceptance. This work fills this gap by focusing on Galicia, territory housing over 4,000 wind turbines and almost 3,400 MW of power. The main difficulty in getting this financial information is that it is classified, not public. We develop methodological techniques (semi- structured interviews and work groups), inserted within the Participatory Research, to overcome this important obstacle. In this manner, the work directly compiles qualitative and quantitative information on the processes as well as the economic results derived from implementing wind energy in Galicia. During the field work, we held 106 semi-structured interviews and 32 workshops with owners of lands occupied by wind farms. The compiled information made it possible to create the socioeconomic database on wind energy in Galicia (SDWEG). This database collects a diversity of quantitative and qualitative information and contains economic information on the income received by the owners of lands occupied by wind farms. In the Galician case, regulatory framework prevented local participation under the community wind farm formula. The possibility of local participation in the new energy model narrowed down to companies wanting to install a wind farm and demanding land occupation. The economic mechanism of local participation begins here, thus explaining the level of acceptance of wind farms. Land owners can receive significant income given that these payments constitute an important source of economic resources, favor local economic activity, allow rural areas to develop productive dynamism projects and improve the standard of living of rural inhabitants. This work estimates that land owners in Galicia perceive about 10 million euros per year in total wind revenues. This represents between 1% and 2% of total wind farm invoicing. On the other hand, relative revenues (Euros per MW), far from the amounts reached in other spaces, show enormous payment variability. This signals the absence of a regulated market, the predominance of partial agreements, and the existence of asymmetric positions between owners and developers. Sustainable development requires the replacement of conventional technologies by low environmental impact technologies, especially those that emit less CO₂. However, this new paradigm also requires rural owners to participate in the income derived from the structural transformation processes linked to sustainable development. This paper demonstrates that regulatory framework may contribute to increasing sustainable technologies with high social acceptance without relevant local economic participation.Keywords: regulatory framework, social acceptance, sustainable development, wind energy, wind income for landowners
Procedia PDF Downloads 14232 Municipalities as Enablers of Citizen-Led Urban Initiatives: Possibilities and Constraints
Authors: Rosa Nadine Danenberg
Abstract:
In recent years, bottom-up urban development has started growing as an alternative to conventional top-down planning. In large proportions, citizens and communities initiate small-scale interventions; suddenly seeming to form a trend. As a result, more and more cities are witnessing not only the growth of but also an interest in these initiatives, as they bear the potential to reshape urban spaces. Such alternative city-making efforts cause new dynamics in urban governance, with inevitable consequences for the controlled city planning and its administration. The emergence of enabling relationships between top-down and bottom-up actors signals an increasingly common urban practice. Various case studies show that an enabling relationship is possible, yet, how it can be optimally realized stays rather underexamined. Therefore, the seemingly growing worldwide phenomenon of ‘municipal bottom-up urban development’ necessitates an adequate governance structure. As such, the aim of this research is to contribute knowledge to how municipalities can enable citizen-led urban initiatives from a governance innovation perspective. Empirical case-study research in Stockholm and Istanbul, derived from interviews with founders of four citizen-led urban initiatives and one municipal representative in each city, provided valuable insights to possibilities and constraints for enabling practices. On the one hand, diverging outcomes emphasize the extreme oppositional features of both cases (Stockholm and Istanbul). Firstly, both cities’ characteristics are drastically different. Secondly, the ideologies and motifs for the initiatives to emerge vary widely. Thirdly, the major constraints for citizen-led urban initiatives to relate to the municipality are considerably different. Two types of municipality’s organizational structures produce different underlying mechanisms which demonstrate the constraints. The first municipal organizational structure is steered by bureaucracy (Stockholm). It produces an administrative division that brings up constraints such as the lack of responsibility, transparency and continuity by municipal representatives. The second structure is dominated by municipal politics and governmental hierarchy (Istanbul). It produces informality, lack of transparency and a fragmented civil society. In order to cope with the constraints produced by both types of organizational structures, the initiatives have adjusted their organization to the municipality’s underlying structures. On the other hand, this paper has in fact also come to a rather unifying conclusion. Interestingly, the suggested possibilities for an enabling relationship underline converging new urban governance arrangements. This could imply that for the two varying types of municipality’s organizational structures there is an accurate governance structure. Namely, the combination of a neighborhood council with a municipal guide, with allowance for the initiatives to adopt a politicizing attitude is found as coinciding. Especially its combination appears key to redeem varying constraints. A municipal guide steers the initiatives through bureaucratic struggles, is supported by coproduction methods, while it balances out municipal politics. Next, a neighborhood council, that is politically neutral and run by local citizens, can function as an umbrella for citizen-led urban initiatives. What is crucial is that it should cater for a more entangled relationship between municipalities and initiatives with enhanced involvement of the initiatives in decision-making processes and limited involvement of prevailing constraints pointed out in this research.Keywords: bottom-up urban development, governance innovation, Istanbul, Stockholm
Procedia PDF Downloads 218