Search results for: key performance indicator (KPI)
4121 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1504120 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method
Authors: J. Satya Eswari, Ch. Venkateswarlu
Abstract:
The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization
Procedia PDF Downloads 4094119 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations
Authors: Xinyong Li
Abstract:
A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole
Procedia PDF Downloads 1424118 Causes and Implications of Obesity in Urban School Going Children
Authors: Mohammad Amjad, Muhammad Iqbal Zafar, Ashfaq Ahmed Maan, Muhammad Tayyab Kashif
Abstract:
Obesity is an abnormal physical condition where an increased and undesirable fat accumulates in the human body. Obesity is an international phenomenon. In the present study, 12 schools were randomly selected from each district considering the areas i.e. Elite Private Schools in the private sector, Government schools in urban areas and Government schools in rural areas. Interviews were conducted with male students studying in grade 5 to grade 9 in each school. The sample size was 600 students; 300 from Faisalabad district and 300 from Rawalpindi district in Pakistan. A well-structured and pre-tested questionnaire was used for data collection. The calibrated scales were used to attain the heights and weights of the respondents. Obesity of school-going children depends on family types, family size, family history, junk food consumption, mother’s education, weekly time spent in walking, and sports facility at school levels. Academic performance, physical health and psychological health of school going children are affected with obesity. Concrete steps and policies could minimize the incidence of obesity in children in Pakistan.Keywords: body mass index, cardiovascular disease, fast food, morbidity, overweight
Procedia PDF Downloads 1834117 Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare the instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in a preparatory program for bachelor’s degree. This program is designed for the disadvantaged learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India, nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where the conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 4254116 Factors Affecting Cost Efficiency of Municipal Waste Services in Tuscan Municipalities: An Empirical Investigation by Accounting for Different Management
Authors: María Molinos-Senante, Giulia Romano
Abstract:
This paper aims at investigating the effect of ownership in the efficiency assessment of municipal solid waste management. In doing so, the Data Envelopment Analysis meta-frontier approach integrating unsorted waste as undesirable output was applied. Three different clusters of municipalities have been created on the basis of the ownership type of municipal waste operators. In the second stage of analysis, the paper investigates factors affecting efficiency, in order to provide an outlook of levers to be used by policy and decision makers to improve efficiency, taking into account different management models in force. Results show that public waste management firms have better performance than mixed and private ones since their efficiency scores are significantly larger. Moreover, it has been demonstrated that the efficiency of waste management firms is statistically influenced by the age of population, population served, municipal size, population density and tourism rate. It evidences the importance of economies of scale on the cost efficiency of waste management. This issue is relevant for policymakers to define and implement policies aimed to improve the long-term sustainability of waste management in municipalities.Keywords: data envelopment analysis, efficiency, municipal solid waste, ownership, undesirable output
Procedia PDF Downloads 1594115 The Effect of Supplementary Cementitious Materials on Fresh and Hardened Properties of Self-Compacting Concretes
Authors: Akram Salah Eddine Belaidi, Said Kenai, El-Hadj Kadri, Benchaâ Benabed, Hamza Soualhi
Abstract:
Self-compacting concrete (SCC) was developed in the middle of the 1980’s in Japan. SCC flows alone under its dead weight and consolidates itself without any entry of additional compaction energy and without segregation. As an integral part of a SCC, self-compacting mortars (SCM) may serve as a basis for the mix design of concrete since the measurement of the rheological properties of SCCs. This paper discusses the effect of using natural pozzolana (PZ) and marble powder (MP) in two alternative systems ratios PZ/MP = 1 and 1/3 of the performance of the SCC. A total of 11 SCC’s were prepared having a constant water-binder (w/b) ratio of 0.40 and total cementitious materials content of 475 kg/m3. Then, the fresh properties of the mortars were tested for mini-slump flow diameter and mini-V-funnel flow time for SCMs and Slumps flow test, L-Box height ratio, V-Funnel flow time and sieve stability for SCC. Moreover, the development in the compressive strength was determined at 3, 7, 28, 56, and 90 days. Test results have shown that using of ternary blends improved the fresh properties of the mixtures. The compressive strength of SCC at 90 days with 30% of PZ and MP was similar to those of ordinary concrete use in situ.Keywords: self-compacting mortar, self-compacting concrete, natural pozzolana, marble powder, rheology, compressive strength
Procedia PDF Downloads 3754114 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1054113 Design and Implementation Guidance System of Guided Rocket RKX-200 Using Optimal Guidance Law
Authors: Amalia Sholihati, Bambang Riyanto Trilaksono
Abstract:
As an island nation, is a necessity for the Republic of Indonesia to have a capable military defense on land, sea or air that the development of military weapons such as rockets for air defense becomes very important. RKX rocket-200 is one of the guided missiles which are developed by consortium Indonesia and coordinated by LAPAN that serve to intercept the target. RKX-200 is designed to have the speed of Mach 0.5-0.9. RKX rocket-200 belongs to the category two-stage rocket that control is carried out on the second stage when the rocket has separated from the booster. The requirement for better performance to intercept missiles with higher maneuverability continues to push optimal guidance law development, which is derived from non-linear equations. This research focused on the design and implementation of a guidance system based OGL on the rocket RKX-200 while considering the limitation of rockets such as aerodynamic rocket and actuator. Guided missile control system has three main parts, namely, guidance system, navigation system and autopilot systems. As for other parts such as navigation systems and other supporting simulated on MATLAB based on the results of previous studies. In addition to using the MATLAB simulation also conducted testing with hardware-based ARM TWR-K60D100M conjunction with a navigation system and nonlinear models in MATLAB using Hardware-in-the-Loop Simulation (HILS).Keywords: RKX-200, guidance system, optimal guidance law, Hils
Procedia PDF Downloads 2544112 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments
Authors: Netsanet Kebede Hundessa
Abstract:
Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation
Procedia PDF Downloads 694111 Resource Allocation of Small Agribusinesses and Entrepreneurship Development In Nigeria
Authors: Festus M. Epetimehin
Abstract:
Resources are essential materials required for production of goods and services. Effective allocation of these resources can engender the success of current business activities and its sustainability for future generation. The study examined effect of resource allocation of small agribusinesses on entrepreneurship development in Southwest Nigeria. Sample size of 385 was determined using Cochran’s formula. 350 valid copies of questionnaire were used in the analysis. In order to achieve the objective, research design (descriptive and cross sectional designs) was used to gather data for the study through the administration of questionnaire to respondents. Both descriptive and inferential statistics were used to investigate the objective of the study. The result obtained indicated that resource allocation by small agribusinesses had a substantial positive effect on entrepreneurship development with the p-value of (0.0000) which was less than the 5.0% critical value with a positive regression coefficient of 0.53. The implication of this is that the ability of the entrepreneurs to deploy their resources efficiently through adequate realization of better gross margin could enhance business activities and development. The study recommends that business owners still need some level of serious training and exposure on how to manage modern small agribusiness resources to enhance business performance. The intervention of Agricultural Development Programme (ADP) and other Agricultural institutions are needed in this regard.Keywords: resource, resource allocation, small businesses, agriculture, entrepreneurship development
Procedia PDF Downloads 514110 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis
Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong
Abstract:
A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell
Procedia PDF Downloads 3434109 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"
Authors: Benlakhdar Mohamed Larbi, Yagoub Asma
Abstract:
Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.Keywords: database, marketing research, marketing intelligence, decision support system, decision-making
Procedia PDF Downloads 3304108 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company
Authors: Atefeh Pourshafie, Homayoun Bakhtiari
Abstract:
The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.Keywords: power, distribution network, reliability, outage
Procedia PDF Downloads 4724107 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper
Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam
Abstract:
Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook
Procedia PDF Downloads 964106 The Perspective of Smart Thermoregulation in Personal Protective Equipment
Authors: Alireza Saidi
Abstract:
Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain
Procedia PDF Downloads 1104105 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation
Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf
Abstract:
This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment
Procedia PDF Downloads 474104 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger
Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani
Abstract:
Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.Keywords: heat transfer coefficient, aluminium, entry length, design
Procedia PDF Downloads 3324103 Simulation of Single-Track Laser Melting on IN718 using Material Point Method
Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz
Abstract:
This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics
Procedia PDF Downloads 594102 ‘Groupitizing’ – A Key Factor in Math Learning Disabilities
Authors: Michal Wolk, Bat-Sheva Hadad, Orly Rubinsten
Abstract:
Objective: The visuospatial perception system process that allows us to decompose and recompose small quantities into a whole is often called “groupitizing.” Previous studies have been found that adults use groupitizing processes in quantity estimation tasks and link this ability of subgroups recognition to arithmetic proficiency. This pilot study examined if adults with math difficulties benefit from visuospatial grouping cues when asked to estimate the quantity of a given set. It also compared the tipping point in which a significant improvement occurs in adults with typical development compared to adults with math difficulties. Method: In this pilot research, we recruited adults with low arithmetic abilities and matched controls. Participants were asked to estimate the quantity of a given set. Different grouping cues were displayed (space, color, or none) with different visual configurations (different quantities-different shapes, same quantities- different shapes, same quantities- same shapes). Results: Both groups showed significant performance improvement when grouping cues appeared. However, adults with low arithmetic abilities benefited from the grouping cues already in very small quantities as four. Conclusion: impaired perceptual groupitizing abilities may be a characteristic of low arithmetic abilities.Keywords: groupitizing, math learning disability, quantity estimation, visual perception system
Procedia PDF Downloads 2044101 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine
Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao
Abstract:
The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)
Procedia PDF Downloads 3454100 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)
Procedia PDF Downloads 2184099 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1114098 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation
Authors: Siddeeq Y. Ameen, Mohammed K. Yousif
Abstract:
Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.Keywords: cooperative systems, decode and forward, interference cancellation, virtual MIMO
Procedia PDF Downloads 3234097 Efficient Photocatalytic Degradation of Tetracycline Hydrochloride Using Modified Carbon Nitride CCN/Bi₂WO₆ Heterojunction
Authors: Syed Najeeb-Uz-Zaman Haider, Yang Juan
Abstract:
Antibiotic overuse raises environmental concerns, boosting the demand for efficient removal from pharmaceutical wastewater. Photocatalysis, particularly using semiconductor photocatalysts, offers a promising solution and garners significant scientific interest. In this study, a Z-scheme 0.15BWO/CCN heterojunction was developed, analyzed, and employed for the photocatalytic degradation of tetracycline hydrochloride (TC) under visible light. The study revealed that the dosage of 0.15BWO@CCN and the presence of coexisting ions significantly influenced the degradation efficiency, achieving up to 87% within 20 minutes under optimal conditions (at pH 9-11/strongly basic conditions) while maintaining 84% efficiency under standard conditions (unaltered pH). Photoinduced electrons gathered on the conduction band of BWO while holes accumulated on the valence band of CCN, creating more favorable conditions to produce superoxide and hydroxyl radicals. Additionally, through comprehensive experimental analysis, the degradation pathway and mechanism were thoroughly explored. The superior photocatalytic performance of 0.15BWO@CCN was attributed to its Z-scheme heterojunction structure, which significantly reduced the recombination of photoinduced electrons and holes. The radicals produced were identified using ESR, and their involvement in tetracycline degradation was further analyzed through active species trapping experiments.Keywords: CCN, Bi₂WO₆, TC, photocatalytic degradation, heterojunction
Procedia PDF Downloads 444096 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs
Authors: Ashish Soni, Suman Kalyan Pal
Abstract:
Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton
Procedia PDF Downloads 684095 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 1464094 Effects of Net Height of Crab Entangling Nets on the Capture of Targeted Economically Important Portunid Species and Non-Target Species
Authors: Rizalyn Gonzales, Harold Monteclaro
Abstract:
This study determined the effects of net height on the capture performance of crab entangling nets. Fishing trials were conducted using nets with the following net heights: 1) 12 meshes down (MD), 2) 24 MD and 3) 50 MD. A total of 1,290 individuals comprising of 87 species belonging to 53 families were caught. One-way ANOVA showed that net height significantly affects various catch parameters such as catch per unit effort (CPUE) of the total and target catch, amount of non-target catch, sizes and species richness. The use of appropriate net height is a potential technical measure for a selective but still efficient crab entangling net fishery. Lower net height significantly reduced non-target catch up to 70%. While lower nets decreased the CPUE of target catch such as blue swimming crab Portunus pelagicus and christian crab Charybdis feriatus up to 65% in 12 MD, catch in 24 MD was not significantly different with that in 50 MD. The use of 24 MD also resulted in capturing larger-sized Portunus pelagicus. Catch species richness decreased up to 58% in lower nets. These results are useful to fisheries managers and government institutions to develop or improve existing regulations towards a sustainable crab fishery particularly blue swimming crabs.Keywords: blue swimming crabs, catch per unit effort, crab entangling nets, net height
Procedia PDF Downloads 2204093 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 84092 Exploitation of Variability for Salinity Tolerance in Maize Hybrids (Zea Mays L.) at Early Growth Stage
Authors: Abdul Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat
Abstract:
Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germplasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.Keywords: salinity, hybrids, maize, variation
Procedia PDF Downloads 717