Search results for: carbon emission efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10048

Search results for: carbon emission efficiency

748 Advancing Healthcare Excellence in China: Crafting a Strategic Operational Evaluation Index System for Chinese Hospital Departments amid Payment Reform Initiatives

Authors: Jing Jiang, Yuguang Gao, Yang Yu

Abstract:

Facing increasingly challenging insurance payment pressures, the Chinese healthcare system is undergoing significant transformations, akin to the implementation of DRG payment models by the United States' Medicare. Consequently, there is a pressing need for Chinese hospitals to establish optimizations in departmental operations tailored to the ongoing healthcare payment reforms. This abstract delineates the meticulous construction of a scientifically rigorous and comprehensive index system at the departmental level in China strategically aligned with the evolving landscape of healthcare payment reforms. Methodologically, it integrates key process areas and maturity assessment theories, synthesizing relevant literature and industry standards to construct a robust framework and indicator pool. Employing the Delphi method, consultations with 21 experts were conducted, revealing a collective demonstration of high enthusiasm, authority, and coordination in designing the index system. The resulting model comprises four primary indicators -technical capabilities, cost-effectiveness, operational efficiency, and disciplinary potential- supported by 14 secondary indicators and 23 tertiary indicators with varied coefficient adjustment for department types (platform or surgical). The application of this evaluation system in a Chinese hospital within the northeastern region yielded results aligning seamlessly with the actual operational scenario. In conclusion, the index system comprehensively considers the integrity and effectiveness of structural, process, and outcome indicators and stands as a comprehensive reflection of the collective expertise of the engaged experts, manifesting in a model designed to elevate the operational management of hospital departments. Its strategic alignment with healthcare payment reforms holds practical significance in guiding departmental development positioning, brand cultivation, and talent development.

Keywords: Chinese healthcare system, Delphi method, departmental management, evaluation indicators, hospital operations, weight coefficients

Procedia PDF Downloads 66
747 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
746 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 65
745 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
744 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin

Abstract:

This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine

Procedia PDF Downloads 337
743 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation

Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar

Abstract:

Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.

Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination

Procedia PDF Downloads 78
742 Structural Health Monitoring-Integrated Structural Reliability Based Decision Making

Authors: Caglayan Hizal, Kutay Yuceturk, Ertugrul Turker Uzun, Hasan Ceylan, Engin Aktas, Gursoy Turan

Abstract:

Monitoring concepts for structural systems have been investigated by researchers for decades since such tools are quite convenient to determine intervention planning of structures. Despite the considerable development in this regard, the efficient use of monitoring data in reliability assessment, and prediction models are still in need of improvement in their efficiency. More specifically, reliability-based seismic risk assessment of engineering structures may play a crucial role in the post-earthquake decision-making process for the structures. After an earthquake, professionals could identify heavily damaged structures based on visual observations. Among these, it is hard to identify the ones with minimum signs of damages, even if they would experience considerable structural degradation. Besides, visual observations are open to human interpretations, which make the decision process controversial, and thus, less reliable. In this context, when a continuous monitoring system has been previously installed on the corresponding structure, this decision process might be completed rapidly and with higher confidence by means of the observed data. At this stage, the Structural Health Monitoring (SHM) procedure has an important role since it can make it possible to estimate the system reliability based on a recursively updated mathematical model. Therefore, integrating an SHM procedure into the reliability assessment process comes forward as an important challenge due to the arising uncertainties for the updated model in case of the environmental, material and earthquake induced changes. In this context, this study presents a case study on SHM-integrated reliability assessment of the continuously monitored progressively damaged systems. The objective of this study is to get instant feedback on the current state of the structure after an extreme event, such as earthquakes, by involving the observed data rather than the visual inspections. Thus, the decision-making process after such an event can be carried out on a rational basis. In the near future, this can give wing to the design of self-reported structures which can warn about its current situation after an extreme event.

Keywords: condition assessment, vibration-based SHM, reliability analysis, seismic risk assessment

Procedia PDF Downloads 143
741 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 101
740 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 72
739 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System

Authors: Hassan Qandil

Abstract:

Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.

Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar

Procedia PDF Downloads 155
738 Reliability Modeling of Repairable Subsystems in Semiconductor Fabrication: A Virtual Age and General Repair Framework

Authors: Keshav Dubey, Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta

Abstract:

In the semiconductor capital equipment industry, effective modeling of repairable system reliability is crucial for optimizing maintenance strategies and ensuring operational efficiency. However, repairable system reliability modeling using a renewal process is not as popular in the semiconductor equipment industry as it is in the locomotive and automotive industries. Utilization of this approach will help optimize maintenance practices. This paper presents a structured framework that leverages both parametric and non-parametric approaches to model the reliability of repairable subsystems based on operational data, maintenance schedules, and system-specific conditions. Data is organized at the equipment ID level, facilitating trend testing to uncover failure patterns and system degradation over time. For non-parametric modeling, the Mean Cumulative Function (Mean Cumulative Function) approach is applied, offering a flexible method to estimate the cumulative number of failures over time without assuming an underlying statistical distribution. This allows for empirical insights into subsystem failure behavior based on historical data. On the parametric side, virtual age modeling, along with Homogeneous and Non-Homogeneous Poisson Process (Homogeneous Poisson Process and Non-Homogeneous Poisson Process) models, is employed to quantify the effect of repairs and the aging process on subsystem reliability. These models allow for a more structured analysis by characterizing repair effectiveness and system wear-out trends over time. A comparison of various Generalized Renewal Process (GRP) approaches highlights their utility in modeling different repair effectiveness scenarios. These approaches provide a robust framework for assessing the impact of maintenance actions on system performance and reliability. By integrating both parametric and non-parametric methods, this framework offers a comprehensive toolset for reliability engineers to better understand equipment behavior, assess the effectiveness of maintenance activities, and make data-driven decisions that enhance system availability and operational performance in semiconductor fabrication facilities.

Keywords: reliability, maintainability, homegenous poission process, repairable system

Procedia PDF Downloads 19
737 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process

Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria

Abstract:

Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.

Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms

Procedia PDF Downloads 108
736 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 69
735 Modelling for Roof Failure Analysis in an Underground Cave

Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández

Abstract:

Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.

Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring

Procedia PDF Downloads 115
734 Selected Macrophyte Populations Promotes Coupled Nitrification and Denitrification Function in Eutrophic Urban Wetland Ecosystem

Authors: Rupak Kumar Sarma, Ratul Saikia

Abstract:

Macrophytes encompass major functional group in eutrophic wetland ecosystems. As a key functional element of freshwater lakes, they play a crucial role in regulating various wetland biogeochemical cycles, as well as maintain the biodiversity at the ecosystem level. The high carbon-rich underground biomass of macrophyte populations may harbour diverse microbial community having significant potential in maintaining different biogeochemical cycles. The present investigation was designed to study the macrophyte-microbe interaction in coupled nitrification and denitrification, considering Deepor Beel Lake (a Ramsar conservation site) of North East India as a model eutrophic system. Highly eutrophic sites of Deepor Beel were selected based on sediment oxygen demand and inorganic phosphorus and nitrogen (P&N) concentration. Sediment redox potential and depth of the lake was chosen as the benchmark for collecting the plant and sediment samples. The average highest depth in winter (January 2016) and summer (July 2016) were recorded as 20ft (6.096m) and 35ft (10.668m) respectively. Both sampling depth and sampling seasons had the distinct effect on variation in macrophyte community composition. Overall, the dominant macrophytic populations in the lake were Nymphaea alba, Hydrilla verticillata, Utricularia flexuosa, Vallisneria spiralis, Najas indica, Monochoria hastaefolia, Trapa bispinosa, Ipomea fistulosa, Hygrorhiza aristata, Polygonum hydropiper, Eichhornia crassipes and Euryale ferox. There was a distinct correlation in the variation of major sediment physicochemical parameters with change in macrophyte community compositions. Quantitative estimation revealed an almost even accumulation of nitrate and nitrite in the sediment samples dominated by the plant species Eichhornia crassipes, Nymphaea alba, Hydrilla verticillata, Vallisneria spiralis, Euryale ferox and Monochoria hastaefolia, which might have signified a stable nitrification and denitrification process in the sites dominated by the selected aquatic plants. This was further examined by a systematic analysis of microbial populations through culture dependent and independent approach. Culture-dependent bacterial community study revealed the higher population of nitrifiers and denitrifiers in the sediment samples dominated by the six macrophyte species. However, culture-independent study with bacterial 16S rDNA V3-V4 metagenome sequencing revealed the overall similar type of bacterial phylum in all the sediment samples collected during the study. Thus, there might be the possibility of uneven distribution of nitrifying and denitrifying molecular markers among the sediment samples collected during the investigation. The diversity and abundance of the nitrifying and denitrifying molecular markers in the sediment samples are under investigation. Thus, the role of different aquatic plant functional types in microorganism mediated nitrogen cycle coupling could be screened out further from the present initial investigation.

Keywords: denitrification, macrophyte, metagenome, microorganism, nitrification

Procedia PDF Downloads 174
733 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 121
732 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 223
731 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
730 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 43
729 Characterization of Kevlar 29 for Multifunction Applications

Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia

Abstract:

Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.

Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.

Procedia PDF Downloads 80
728 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 432
727 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis

Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam

Abstract:

Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.

Keywords: cord blood, liver fibrosis, stem cells, transplantation

Procedia PDF Downloads 309
726 Rescaling Global Health and International Relations: Globalization of Health in a Low Security Environment

Authors: F. Argurio, F. G. Vaccaro

Abstract:

In a global environment defined by ever-increasing health issues, in spite of the progress made by modern medicine, this paper seeks to readdress the question of global health in an international relations perspective. The research hypothesis is: the lower the security environment, the higher the spread of communicable diseases. This question will be channeled by re-scaling the connotation of 'global' and 'international' dimension through the theoretical lens of glocalization, a theory by Bauman that starts its analysis from simple systems to get to the most complex ones. Glocalization theory will be operationalized by analyzing health in an armed-conflict context. In this respect, the independent variable 'low security environment' translates into the cases of Syria and Yemen, which provide a clear example of the all-encompassing nature of conflict on national health and the effects on regional development. In fact, Syria and Yemen have been affected by poliomyelitis and cholera outbreaks respectively. The dependent variable will be constructed on said communicable diseases which belong to the families of sanitation-related and vaccine-preventable diseases. The research will be both qualitative and quantitative, based on primary (interviews) and secondary (WHO and other NGO’s reports) sources. The methodology is based on the assessment of the vaccine coverage and case-analysis in time and space using epidemiological data. Moreover, local health facilities’ functioning and efficiency will be studied. The article posits that the intervention and cooperation of international organizations with the local authorities becomes crucial to provide the local populations with their primary health needs. In Yemen, the majority of fatal cholera cases were in the regions controlled by the Houthi rebels, not officially accredited by the International Community. Similarly, the polio outbreak in Syria primarily affected the areas not controlled by the Syrian Arab Republic forces, recognized as the leading interlocutor by the WHO. The jeopardized possibilities to access these countries have been pivotal to the determining the problem in controlling sanitation-related and vaccine preventable diseases. This represents a potential threat to global health.

Keywords: health in conflict-affected areas, cholera, polio, Yemen, Syria, glocalization

Procedia PDF Downloads 134
725 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 376
724 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 130
723 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 72
722 A Literature Review and a Proposed Conceptual Framework for Learning Activities in Business Process Management

Authors: Carin Lindskog

Abstract:

Introduction: Long-term success requires an organizational balance between continuity (exploitation) and change (exploration). The problem of balancing exploitation and exploration is a common issue in studies of organizational learning. In order to better face the tough competition in the face of changes, organizations need to exploit their current business and explore new business fields by developing new capabilities. The purpose of this work in progress is to develop a conceptual framework to shed light on the relevance of 'learning activities', i.e., exploitation and exploration, on different levels. The research questions that will be addressed are as follows: What sort of learning activities are found in the Business Process Management (BPM) field? How can these activities be linked to the individual level, group, level, and organizational level? In the work, a literature review will first be conducted. This review will explore the status of learning activities in the BPM field. An outcome from the literature review will be a conceptual framework of learning activities based on the included publications. The learning activities will be categorized to focus on the categories exploitation, exploration or both and into the levels of individual, group, and organization. The proposed conceptual framework will be a valuable tool for analyzing the research field as well as identification of future research directions. Related Work: BPM has increased in popularity as a way of working to strengthen the quality of the work and meet the demands of efficiency. Due to the increase in BPM popularity, more and more organizations reporting on BPM failure. One reason for this is the lack of knowledge about the extended scope of BPM to other business contexts that include, for example, more creative business fields. Yet another reason for the failures are the fact of the employees’ are resistant to changes. The learning process in an organization is an ongoing cycle of reflection and action and is a process that can be initiated, developed and practiced. Furthermore, organizational learning is multilevel; therefore the theory of organizational learning needs to consider the individual, the group, and the organization level. Learning happens over time and across levels, but it also creates a tension between incorporating new learning (feed-forward) and exploiting or using what has already been learned (feedback). Through feed-forward processes, new ideas and actions move from the individual to the group to the organization level. At the same time, what has already been learned feeds back from the organization to a group to an individual and has an impact on how people act and think.

Keywords: business process management, exploitation, exploration, learning activities

Procedia PDF Downloads 124
721 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 273
720 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.

Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants

Procedia PDF Downloads 78
719 Upper Jurassic to Lower Cretaceous Oysters (Bivalvia, Ostreoidea) from Siberia: Taxonomy and Variations of Carbon and Oxygen Isotopes

Authors: Igor N. Kosenko

Abstract:

The present contribution is an analysis of more than 300 specimens of Upper Jurassic to Lower Cretaceous oysters collected by V.A. Zakharov during the 1960s and currently stored in the Trofimuk Institute of Geology and Geophysics SB RAS (Novosibirsk, Russia). They were sampled in the northwestern bounder of Western Siberia (Yatriya, Maurynia, Tol’ya and Lopsiya rivers) and the north of Eastern Siberia (Boyarka, Bolshaya Romanikha and Dyabaka-Tari rivers). During the last five years, they were examined with taxonomical and palaeoecological purposes. Based on carbonate material of oyster’s shells were performed isotopic analyses and associated palaeotemperatures. Taxonomical study consists on classical morphofunctional and biometrical analyses. It is completed by another large amount of Cretaceous oysters from Crimea as well as modern Pacific oyster - Crassostrea gigas. Those were studied to understand the range of modification variability between different species. Oysters previously identified as Liostrea are attributed now to four genera: Praeexogyra and Helvetostrea (Flemingostreidae), Pernostrea (Gryphaeidae) and one new genus (Gryphaeidae), including one species “Liostrea” roemeri (Quenstedt). This last is characterized by peculiar ethology, being attached to floating ammonites and morphology, outlined by a beak-shaped umbo on the right (!) valve. Endemic Siberian species from the Pernostrea genus have been included into the subgenus Boreiodeltoideum subgen. nov. Pernostrea and Deltoideum genera have been included into the tribe Pernostreini n. trib. from the Gryphaeinae subfamily. Model of phylogenetic relationships between species of this tribe has been proposed. Siberian oyster complexes were compared with complexes from Western Europe, Poland and East European Platform. In western Boreal and Subboreal Realm (England, northern France and Poland) two stages of oyster’s development were recognized: Jurassic-type and Cretaceous-type. In Siberia, Jurassic and Lower Cretaceous oysters formed a unique complex. It may be due to the isolation of the Siberian Basin toward the West during the Early Cretaceous. Seven oyster’s shells of Pernostrea (Pernostrea) uralensis (Zakharov) from the Jurassic/Cretaceous Boundary Interval (Upper Volgian – Lower Ryazanian) of Maurynia river were used to perform δ13C and δ18O isotopic analyses. The preservation of the carbonate material was controlled by: cathodoluminescence analyses; content of Fe, Mn, Sr; absence of correlation between δ13C and δ18O and content of Fe and Mn. The obtained δ13C and δ18O data were compared with isotopic data based on belemnites from the same stratigraphical interval of the same section and were used to trace palaeotemperatures. A general trend towards negative δ18O values is recorded in the Maurynia section, from the lower part of the Upper Volgian to the middle part of the Ryazanian Chetaites sibiricus ammonite zone. This trend was previously recorded in the Nordvik section. The higher palaeotemperatures (2°C in average) determined from oyster’s shells indicate that belemnites likely migrated laterally and lived part of their lives in cooler waters. This work financially supported by the Russian Foundation for Basic Researches (grant no. 16-35-00003).

Keywords: isotopes, oysters, Siberia, taxonomy

Procedia PDF Downloads 194