Search results for: two phase blood flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10572

Search results for: two phase blood flow

9672 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.

Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer

Procedia PDF Downloads 437
9671 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale

Authors: Wen-Wei Chiang

Abstract:

In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.

Keywords: flow experience, positive psychology, questionnaire, science learning

Procedia PDF Downloads 104
9670 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Authors: T. J. Jamaleddine

Abstract:

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

Keywords: CFD, degasser vessel, gas-solids flow, gas purging, purge column, species transport

Procedia PDF Downloads 112
9669 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature

Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim

Abstract:

Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.

Keywords: quenching medium, annealing temperature, dual phase steel, martensite

Procedia PDF Downloads 67
9668 Prandtl Number Influence Analysis on Droplet Migration in Natural Convection Flow Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Multiphase flows have currently been placed as a key solution for technological advances in energy and thermal sciences. The comprehension of droplet motion and behavior on non-isothermal flows is, however, rather limited. The present work consists of an investigation of a 2D droplet migration on natural convection inside a square enclosure with differentially heated walls. The investigation in question concerns the effects on drop motion of imposing different combinations of Prandtl and Rayleigh numbers while defining the drop on distinct initial positions. The finite differences method was used to compute the Navier-Stokes and energy equations for a laminar flow, considering the Boussinesq approximation. Also, a high order level set method was applied to simulate the two-phase flow. A previous analysis developed by the authors had shown that for fixed values of Rayleigh and Prandtl, the variation of the droplet initial position at the beginning of the simulation delivered different patterns of motion, in which for Ra≥10⁴ the droplet presents two very specific behaviors: it can travel through a helical path towards the center or define cyclic circular paths resulting in closed paths when reaching the stationary regime. Now, when varying the Prandtl number for different Rayleigh regimes, it was observed that this particular parameter also affects the migration of the droplet, altering the motion patterns as its value is increased. On higher Prandtl values, the drop performs wider paths with larger amplitudes, traveling closer to the walls and taking longer time periods to finally reach the stationary regime. It is important to highlight that drastic drop behavior changes on the stationary regime were not yet observed, but the path traveled from the begging of the simulation until the stationary regime was significantly altered, resulting in distinct turning over frequencies. The flow’s unsteady Nusselt number is also registered for each case studied, enabling a discussion on the overall effects on heat transfer variations.

Keywords: droplet migration, level set method, multiphase flow, natural convection in enclosure, Prandtl number

Procedia PDF Downloads 107
9667 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 157
9666 Investigating the Prevalence of HCV from Laboratory Centers in Tehran City - Iran by Electrochemiluminescence (ECL) and PCR Techniques

Authors: Zahra Rakhshan Masoudi, Sona Rostampour Yasouri

Abstract:

Considering that the only way to save the lives of patients and healthy people who have suffered sudden accidents is blood transfusion, what is important is the presence of the known HCV virus as the most important cause of the disease after blood transfusion. HCV is one of the major global problems, and its transmission through blood causes life-threatening complications and extensive legal, social and economic consequences. On the one hand, unfortunately, there is still no effective vaccine available to prevent HCV. In Iran, the exact statistics of the prevalence of this disease have not yet been fully announced. The main purpose of this study is to investigate the prevalence rate and rapid diagnosis of HCV among those who refer to laboratory centers in Tehran. From spring to winter of 1401 (2022-2023), 2166 blood samples were collected from laboratory centers in Tehran. Blood samples were evaluated for the presence of HCV by Electrochemiluminescence (ECL) and PCR techniques along with specific HCV primers. In general, 36 samples (1.6%) were tested positive by the mentioned techniques. The results indicated that the ECL technique is a sensitive and specific diagnostic method for detecting HCV in the early stages of the disease and can be very helpful and provide the possibility of starting the treatment steps to prevent the exacerbation of the disease earlier. Also, the results of PCR technique showed that PCR is an accurate, sensitive and fast method for definitive diagnosis of HCV. It seems that the incidence rate of this disease is increasing in Iran, and investigating the spread of the disease throughout Iran for a longer period of time in the continuation of our research can be helpful in the future to take the necessary measures to prevent the transmission of the disease to people and the rapid onset Treatment steps for patients with HCV should be carried out.

Keywords: electrochemiluminescence, HCV, PCR, prevalence

Procedia PDF Downloads 50
9665 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam

Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton

Abstract:

The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.

Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution

Procedia PDF Downloads 400
9664 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness

Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra

Abstract:

Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.

Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy

Procedia PDF Downloads 445
9663 Development of Thermo-Regulating Fabric Using Microcapsules of Phase Change Material

Authors: D. Benmoussa, H. Hannache, O. Cherkaoui

Abstract:

In textiles, the major interest in microencapsulation is currently in the application of durable fragrances, skin softeners, phase-change materials, antimicrobial agents and drug delivery systems onto textile materials. In our research “Polyethylene Glycol” was applied as phase change material and it was encapsulated in polymethacrylic acid (PMA) by radical polymerization in suspension of methacrylic acid in presence of N,N'-methylenebisacrylamide (MBAM) as crosslinking agent. Thereafter the obtained microcapsule was modified by amidation with ethylenediamine as a spacer molecule. At the end of this spacer trichlorotriazine reactive group was fixed. Microcapsules were grafted onto cotton textile substrate. The surface morphologies of the microencapsulated phase change materials (micro PCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared micro PCMs were investigated by differential scanning calorimetry (DSC) and thermogravmetric analysis (TGA). The results obtained show the obtaining microcapsules with a mean diameter of 10 µm and the resistance of the microcapsules is demonstrated by thermal analysis.

Keywords: energy storage, microencapsulation, phase-change materials, thermogravmetric analysis (TGA)

Procedia PDF Downloads 656
9662 Braiding Channel Pattern Due to Variation of Discharge

Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua

Abstract:

An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.

Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity

Procedia PDF Downloads 120
9661 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle.

Keywords: fluidic thrust vectoring, rocket steering, supersonic to sonic jet interaction, TVC in aerospace vehicles

Procedia PDF Downloads 576
9660 Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation, a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of the fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRICscheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid

Procedia PDF Downloads 359
9659 Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration

Authors: Ravi Kumar, Santhosh Kumar Dubba

Abstract:

This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent.

Keywords: diabatic, capillary tube, concentric, R-600a

Procedia PDF Downloads 192
9658 Canine Visceral Leishmaniasis In Brazil

Authors: Elisangela Sobreira, Denise Teixeira

Abstract:

Visceral leishmaniasis is a public health problem in Brazil, it is the main reservoir dog. In the period 2012-2016 78 diagnoses were performed in dogs suspected. Blood samples were collected from the cephalic vein obtaining serum used for the indirect immunofluorescence test and enzyme-linked immunosorbent assay, while it collected a drop of blood for the rapid chromatographic immunoassay. Obtained in 32 dogs positive. The test is important for the control of this disease and is used routinely in the Zoonoses Control Center.

Keywords: Brazil, dogs, Leismaniasis, Zoonoses center

Procedia PDF Downloads 241
9657 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials

Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen

Abstract:

The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.

Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour

Procedia PDF Downloads 252
9656 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 439
9655 Active Power Flow Control Using a TCSC Based Backstepping Controller in Multimachine Power System

Authors: Naimi Abdelhamid, Othmane Abdelkhalek

Abstract:

With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).

Keywords: FACTS, thyristor controlled series capacitor (TCSC), backstepping, BPFC, PIPFC

Procedia PDF Downloads 512
9654 Oscillatory Electroosmotic Flow in a Microchannel with Slippage at the Walls and Asymmetric Wall Zeta Potentials

Authors: Oscar Bautista, Jose Arcos

Abstract:

In this work, we conduct a theoretical analysis of an oscillatory electroosmotic flow in a parallel-plate microchannel taking into account slippage at the microchannel walls. The governing equations given by the Poisson-Boltzmann (with the Debye-Huckel approximation) and momentum equations are nondimensionalized from which four dimensionless parameters appear; a Reynolds angular number, the ratio between the zeta potentials of the microchannel walls, the electrokinetic parameter and the dimensionless slip length which measures the competition between the Navier slip length and the half height microchannel. The principal results indicate that the slippage has a strong influence on the magnitude of the oscillatory electroosmotic flow increasing the velocity magnitude up to 50% for the numerical values used in this work.

Keywords: electroosmotic flows, oscillatory flow, slippage, microchannel

Procedia PDF Downloads 211
9653 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 372
9652 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method

Authors: Asghar Ebrahimi, Elyas Lakzian

Abstract:

For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.

Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell

Procedia PDF Downloads 466
9651 Kinoform Optimisation Using Gerchberg- Saxton Iterative Algorithm

Authors: M. Al-Shamery, R. Young, P. Birch, C. Chatwin

Abstract:

Computer Generated Holography (CGH) is employed to create digitally defined coherent wavefronts. A CGH can be created by using different techniques such as by using a detour-phase technique or by direct phase modulation to create a kinoform. The detour-phase technique was one of the first techniques that was used to generate holograms digitally. The disadvantage of this technique is that the reconstructed image often has poor quality due to the limited dynamic range it is possible to record using a medium with reasonable spatial resolution.. The kinoform (phase-only hologram) is an alternative technique. In this method, the phase of the original wavefront is recorded but the amplitude is constrained to be constant. The original object does not need to exist physically and so the kinoform can be used to reconstruct an almost arbitrary wavefront. However, the image reconstructed by this technique contains high levels of noise and is not identical to the reference image. To improve the reconstruction quality of the kinoform, iterative techniques such as the Gerchberg-Saxton algorithm (GS) are employed. In this paper the GS algorithm is described for the optimisation of a kinoform used for the reconstruction of a complex wavefront. Iterations of the GS algorithm are applied to determine the phase at a plane (with known amplitude distribution which is often taken as uniform), that satisfies given phase and amplitude constraints in a corresponding Fourier plane. The GS algorithm can be used in this way to enhance the reconstruction quality of the kinoform. Different images are employed as the reference object and their kinoform is synthesised using the GS algorithm. The quality of the reconstructed images is quantified to demonstrate the enhanced reconstruction quality achieved by using this method.

Keywords: computer generated holography, digital holography, Gerchberg-Saxton algorithm, kinoform

Procedia PDF Downloads 510
9650 Signaling Using Phase Shifting in Wi-Fi Backscatter System

Authors: Chang-Bin Ha, Young-Min Ko, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

In this paper, the signaling scheme using phase shifting is proposed for the improved performance of the Wi-Fi backscatter system. Because the communication in the Wi-Fi backscatter system is based on on-off modulation and impedance modulation by unit of packet, the data rate is very low compared to the conventional wireless systems. Also, because the Wi-Fi backscatter system is based on the RF-powered device, the achievement of high reliability is difficult. In order to increase the low data rate, the proposed scheme transmits information of multiple bits during one packet period. Also, in order to increase the reliability, the proposed scheme shifts the phase of signal in according to the transmitting information. The simulation result shows that the proposed scheme has the improved throughput performance.

Keywords: phase shifting, RF-powered device, Wi-Fi backscatter system, IoT

Procedia PDF Downloads 426
9649 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: butterfly valves, fluid-structure interaction, one-way approach, two-way approach

Procedia PDF Downloads 153
9648 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships

Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang

Abstract:

In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.

Keywords: ice slurry, seawater pipe, ice packing fraction, numerical simulation

Procedia PDF Downloads 351
9647 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers

Authors: Abhimanyu Thakur, Youngjin Lee

Abstract:

Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.

Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties

Procedia PDF Downloads 128
9646 Separation of Fexofenadine Enantiomers Using Beta Cyclodextrin as Chiral Counter Ion in Mobile Phase

Authors: R. Fegas, S. Zerkout, S. Taberkokt, M. Righezza

Abstract:

The present work demonstrate the potential of Betacyclodextrine (BCD) for the chiral analysis of a drug .Various separation mechanisms were applied and several parameters affecting the separation were studied, including the type and concentration of chiral selector, and pH of buffer. A simple and sensitive high-performance liquid chromatography (HPLC) method was developed as an assay for fexofenadine enantiomers in pharmaceutical preparation. Fexofenadine enantiomers were separated using a mobile phase of 0.25mM NaH2PO4–acetonitrile (65:35, v/v) – Betacyclodextrine on achiral phenyl-urea column at a flow rate of 1ml/min and measurement at 220nm. The chiral mechanism of separation was mainly based on specific interaction between the solute and the stationary phase. The retention was directly controlled by mobile phase composition but not the selectivity which results of the two mechanisms, electrostatic interactions and partition mechanism.

Keywords: fexofenadine enantiomer, HPLC, achiral phenyl-urea column

Procedia PDF Downloads 445
9645 The Impact of Ramadan Fasting on Blood Pressure: Observational Study and a Meta-Analysis

Authors: Rami Al Jafar, Paul Elliott, Konstantinos K. Tsilidis, Abbas Dehghan

Abstract:

Although Ramadan fasting is a ritual that is practiced every year by millions of Muslims, studies on Ramadan fasting are still scarce. To the best of our knowledge, none of the previous studies comprehensively explored the effect on the metabolic profile. In London Ramadan Fasting Study, blood samples were collected from 81 participants before and 10-14 days after Ramadan. Blood samples were analysed using nuclear magnetic resonance (NMR) spectroscopy which covers 249 metabolites. Mixed-effects models were used to analyse collected data and assess the effect of Ramadan fasting on the metabolic profile. Our observational study involved 85 individuals with a mean age of 45.2 years, and 53.1% of them were males. After Ramadan, forty metabolites were affected significantly by Ramadan fasting. Most of these metabolites were metabolites ratios (24), and the rest were three Glycolysis, three ketone bodies, nine Lipoprotein subclasses and one inflammation marker. This study suggests that Ramadan fasting is significantly associated with changes in the metabolic profile. However, the changes are assumed to be temporary, and the long-term effect of these changes is unknown.

Keywords: metabolic profile, Ramadan fasting, metabolites, intermittent fasting

Procedia PDF Downloads 149
9644 Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress.

Keywords: bed roughness, ejection and sweep, open channel flow, Reynolds shear stress, turbulent boundary layer, velocity triple product

Procedia PDF Downloads 242
9643 Modelling and Analysis of Shear Banding in Flow of Complex Fluids

Authors: T. Chinyoka

Abstract:

We present the Johnson-Segalman constitutive model to capture certain fluid flow phenomena that has been experimentally observed in the flow of complex polymeric fluids. In particular, experimentally observed phenomena such as shear banding, spurt and slip are explored and/or explained in terms of the non-monotonic shear-stress versus shear-rate relationships. We also explore the effects of the inclusion of physical flow aspects such as wall porosity on shear banding. We similarly also explore the effects of the inclusion of mathematical modelling aspects such as stress diffusion into the stress constitutive models in order to predict shear-stress (or shear-rate) paths. We employ semi-implicit finite difference methods for all the computational solution procedures.

Keywords: Johnson-Segalman model, diffusive Johnson-Segalman model, shear banding, finite difference methods, complex fluid flow

Procedia PDF Downloads 354