Search results for: sustainable material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10879

Search results for: sustainable material

9979 Estimating Visitor’s Willingness to Pay for the Conservation Fund: Sustainable Financing Approach in Protected Areas in Ethiopia

Authors: Sintayehu Aynalem Aseres, Raminder Kaur Sira

Abstract:

Increasingly, protected areas have been confronting with inadequate conservation funds that make it tough to antithesis the continuing of annihilation. The problem is even grave in developing countries, where Protected Areas (Pas) are mainly government-administered. Subsequently, it needs a strong effort to toughen the self-financing capability of PAs by ripening alternative sources of sustainable financing for realizing the conservation goals, in particular, to save the remaining natural planet. This study, therefore, designed to estimate visitors’ willingness to pay (WTP) for the additional conservation fees using a contingent valuation method. The effect relationship between WTP and both socio-demographic and non-economic factors was scrutinized by binary logistic regression. The mean WTP of foreign visitors has estimated at US$ 7.4 and for that of domestic visitors at US$1, with annual aggregate revenue of US$29, 200. The WTP was strongly influenced by income, satisfaction, environmental concern and attitude. The study has policy implications for the conservationists and park authorities to estimate the non-use values of PAs for developing market-based conservation instruments.

Keywords: conservation, ecotourism, sustainable financing, willingness to pay, protected areas, bale mountains national park

Procedia PDF Downloads 161
9978 Comparison of Surface Hardness of Filling Material Glass Ionomer Cement Which Soaked in Alcohol Containing Mouthwash and Alcohol-Free Mouthwash

Authors: Farid Yuristiawan, Aulina R. Rahmi, Detty Iryani, Gunawan

Abstract:

Glass ionomer cement is one of the filling material that often used in the field of dentistry because it is relatively less expensive and mostly available. Surface hardness is one of the most important properties of restoration material; it is the ability of material to stand against indentation, which is directly connected to the material compressive strength and its ability to withstand abrasion. The higher surface hardness of a material means it is better to withstand abrasion. The existence of glass ionomer cement in the mouth makes it susceptible to any substance that comes into mouth, one of them is mouthwash which is a solution that used for many purposes such as antiseptic, astringent, to prevent caries, and bad breath. The presence of alcohol in mouthwash could affect the properties of glass ionomer cement, surface hardness. Objective: To determine the comparison of surface hardness of glass ionomer cement which soaked in alcohol containing mouthwash and alcohol-free mouthwash. Methods: This research is a laboratory experimental type study. There were 30 samples made from GC FUJI IX GP EXTRA and then soaked in artificial saliva for the first 24 hours inside incubator which temperature and humidity were controlled. Samples then divided into three groups. The first group will be soaked in alcohol-containing mouthwash; second group will be soaked alcohol-free mouthwash and control group will be soaked in artificial saliva for 6 hours inside incubator. Listerine is the mouthwash that was used on this research and surface hardness was examined using Vickers Hardness Tester. The result of this research shows mean value for surface hardness of the first group is 16.36 VHN, 24.04 VHN for second group, and 43.60 VHN for control group. The result one way ANOVA with post hoc Bonferroni comparing test show significant results p = 0.00. Conclusions: The data showed there were statistically significant differences of surface hardness between each group, which surface hardness of the first group is lower than the second group, and both surface hardness of the first (alcohol mouthwash) and second group (alcohol-free mouthwash) are lowered than control group (p = 0.00).

Keywords: glass ionomer cement, mouthwash, surface hardness, Vickers hardness tester

Procedia PDF Downloads 224
9977 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 538
9976 Site Selection in Adaptive Reuse Architecture for Social Housing in Johannesburg, South Africa

Authors: Setapo Moloi, Jun-Ichiro Giorgos Tsutsumi

Abstract:

South Africa’s need for the provision of housing within its major city centres, specifically Gauteng Province (GP), is a major concern. Initiatives for converting misused/ unused buildings to suitable housing for residents who work in the city as well as prospective citizens are currently underway, one aspect that is needed currently, is the re-possession of these buildings repurposing, into housing communities for quality low cost mixed density housing and for this process to have minimal strain on existing infrastructure like energy, emission reduction etc. Unfortunately, there are instances in Johannesburg, the country’s economic capital, with 2017 estimates claiming that 700 buildings lay unused or misused due to issues that will be discussed in this paper, these then become hubs for illegal activity and are an unacceptable form of shelter. It can be argued that the provision of inner-city social housing is lacking, but not due to the unavailability of funding or usable land and buildings, but that these assets are not being used appropriately nor to their full potential. Currently the GP government has mandated the re-purposing of all buildings that meet their criteria (structural stability, feasibility, adaptability, etc.) with the intention of inviting interested parties to propose conversions of the buildings into densified social housing. Going forward, the proposed focus is creation of social housing communities within existing buildings which may be retrofitted with sustainable technologies, green design strategies and principles, aiming for the finished buildings to achieve ‘Net-Zero/Positive’ status. A Net-Zero building, according to The Green Building Council of South Africa (GBCSA) is a building which manages to produce resources it needs to function, and reduces wastage, emissions and demand of these resources during its lifespan. The categories which GBCSA includes are carbon, water, waste and ecology, this may include material selection, construction methods, etc.

Keywords: adaptive reuse, conversion, net-zero, social housing, sustainable communities

Procedia PDF Downloads 138
9975 Provision of the Amenities Lacking in the Annapur Village Through a Different Government Scheme to Become Self Sustainable Village

Authors: Shalaka Sharad Dixit

Abstract:

Rural Development in India is an important part of the rural economy & empowerment. Almost 70 percent of the Indian population lives in villages, hence rural development is important to become self-sustainable. Hence, the process to aiming the self-reliance of people living in rural areas. Maharashtra is one of the leading states in rural development. Hence, further study of the different villages in the five regions of Maharashtra i.e. Kokan, Pashchim, Marathwada, Khandesh, and Vidharbh. The study shows that major amenities lacking in the village. Annapur village case study has been done. The result has shown that the villagers face major problems like Unemployment, Load shedding, missing education facilities, unavailability of Bank and ATM, etc. They are facing lots of problems because scarce of required amenities. Therefore, the aim is to provide the amenities lacking in the Annapur village through a different government scheme. Government plans are devoted to development that includes the PMGSY, MGNREG, and GRAM UJALA. The study concluded that to provide and fulfill the amenities lacking in the Annapur village with the help of this government initiative.

Keywords: self sustainable rural development, government policies, Annapurna village, amenities, smart village

Procedia PDF Downloads 99
9974 Characterization of Stabilized Earth in the Construction Field

Authors: Sihem Chaibeddra, Fatoum Kharchi

Abstract:

This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material.

Keywords: behavior, characterization, construction, earth, stabilization

Procedia PDF Downloads 243
9973 Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran

Authors: Mohammad Javad Seddighi, Avar Almukhtar

Abstract:

The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation.

Keywords: natural disasters, heritage conservation, sustainable hazard mitigation, environmental design, landscape architecture, flood management, disaster resilience

Procedia PDF Downloads 88
9972 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach

Authors: Helen L. Hein, Joachim Schwarte

Abstract:

As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.

Keywords: aerogel-based, insulating material, early development phase, interval arithmetic

Procedia PDF Downloads 143
9971 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 122
9970 The Sustainable Strategies Research for Renewal of “Villages in City”: A Case Study of Liuzhou in Southwestern China

Authors: Kai Zhang

Abstract:

Transformation under the reconfiguration of urban-rural relation in Liuzhou city has never been as radical and visible as it has been since the tremendous turn of the last century in China. Huanjiang village is located in Linhuashan Scenic Area in the middle east of Liuzhou city, with spectacular landscape and traditional features. Nowadays Huanjiang village has become a so-called "village in city", which is considered full of great potential for development because of the economic value of regional advantages during the urban sprawl. Communities of village found it difficult to acclimatize with the dramatic changes, which later led to numerous problems including ecological damage, unemployment of landless farmers and loss of traditional culture. Government has started up a series of renewal planings to resolve the problems, which are based on advanced technology and conform to sustainable and integrated strategies of city planning considering the original context and historical culture, superseding the traditional arrangements based on the guide of extensive economic growth. This paper aims to elaborate the context of Liuzhou city and Huanjiang village offered to both the traditional and sustainable planning approaches, in order to understand challenges and solutions of the rebuilding process. Through the analysis of the place relevant to architecture, society and culture, it will establish the corresponding systematic strategies. Considering the local features, it concludes with a comprehensive perspective on organic renewal in the case of Huanjiang village.

Keywords: China, Liuzhou, sustainable strategy, urban renewal, village in city

Procedia PDF Downloads 283
9969 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density

Procedia PDF Downloads 126
9968 Preparation and Characterization of Lanthanum Aluminate Electrolyte Material for Solid Oxide Fuel Cell

Authors: Onkar Nath Verma, Nitish Kumar Singh, Raghvendra, Pravin Kumar, Prabhakar Singh

Abstract:

The perovskite type electrolyte material LaAlO3 was prepared by solution based auto-combustion method using Al (NO3)3.6H2O, La2O3 with dilute nitrate acid (HNO3) as precursors and citric acid (C6H8O7.H2O) as a fuel. The synthesis protocol gave an easy processing of the LaAlO3 nano-particles. The XRD measurement revealed that the material has single phase with space group R-3c (rhombohedral). Thermal behavior was measured by simultaneous differential thermal analysis and thermo gravimetric analysis (DTA-TGA). The compact pellet density was determined. Also, the surface morphology was studied using scanning electron microscopy (SEM). The conductivity of LaAlO3 was measured employing LCR meter and found to increase with increasing temperature. This increase in conductivity may be attributed to increased mobility of oxide ion.

Keywords: perovskite, LaAlO3, XRD, SEM, DTA-TGA, SOFC

Procedia PDF Downloads 503
9967 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection

Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh

Abstract:

As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.

Keywords: microbes, inoculants, fertilization, soil health, conventional.

Procedia PDF Downloads 83
9966 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 440
9965 Initiating Learning to Know among Fishers for Sustainable Fishery on Lake Victoria. A Case of Kigungu Fishing Ground Wakiso District

Authors: Namubiru Zula, Aganyira Kelle, Van der Linden Josje, Openjuru George Laadah

Abstract:

Learning to know is a key principle to lifelong learning, with self-direction as the cornerstone. This study sought to initiate self-direction for lifelong learning through social constructivism among fishers; with the major goal of creating a community of fishers who continuously learn from each other for sustainable fishing. Government of Uganda has instituted several mechanisms like co-management with Beach Management Unit (BMU) System against illegal fishing. However, illegal fishing persists, there is reduced fish stocks with several outcry on how fishers are handled. Some studies have indicated that it’s the poor orientation of BMU leaders and fishers which are top down. This initial engagement of fishers was conducted through a meeting and use of stake holder’s analysis tool to discuss the relevance of the study; harnessing fishers’ knowledge for sustainable fisheries on Lake Victoria, its objectives, the key stake holders to enable them fish sustainably. It revealed initial attempt to learn from each other and learning to know among fishers, with some elements of self-direction. However, fishers attempt to learning and self-direction are affected by prior brutal enforcement experiences. This meeting led to fishers gain some sense of hope towards enforcement brutality. The key stakeholders highlighted include MAAIF, FAO, UNBS, NaFIRRI, LVFO, BMU, UFPEA, Fishers m employers, Fisheries Protection Unit, GIZ, and any Non-Government organization but declined the Association of Fisheries and Lake Users in Uganda.

Keywords: self direction, lifelong learning, social constructivism, sustainable fishing

Procedia PDF Downloads 86
9964 Factors Affecting Sustainable Water Management in Water-Challenged Societies: Case Study of Doha Qatar

Authors: L. Mathew, D. Thomas

Abstract:

Qatar is a desert country with scarce fresh water resources, low rainfall and very high evaporation rate. It meets the majority of its water requirement through desalination process which is very expensive. Pressures are expected to mount on account of high population growth rate and demands posed by being the venue for 2022 FIFA World cup. This study contributes towards advancing the knowledge of the factors affecting sustainable water consumption in water-challenged societies by examining the case of Doha, Qatar. Survey research methods have been predominantly used for this research. Surveys were conducted using self-administered questionnaires. Focused group interviews and personal interviews with Qatar’s residents were also used to obtain deeper insights. Salient socio-cultural factors that drive the water consumption behavior of the public and which in turn affect sustainable water management practices are determined. Suggestions for reducing water consumption as well as fiscal and punitive measures to curb overuse and misuse of water are also identified.

Keywords: Middle East, Qatar, water consumption, water management, sustainability

Procedia PDF Downloads 244
9963 Mitigation Strategies in the Urban Context of Sydney, Australia

Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris

Abstract:

One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.

Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect

Procedia PDF Downloads 94
9962 New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution

Authors: M. A. Ashour

Abstract:

As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water.

Keywords: environment, water resources, agricultural wastes, oil pollution control, sugarcane

Procedia PDF Downloads 189
9961 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash

Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie

Abstract:

This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.

Keywords: cementitious material, compressive strength, GGBS, HCFA, OPC

Procedia PDF Downloads 194
9960 Technology Blending as an Innovative Construction Mechanism in the Global South

Authors: Janet Kaningen, Richard N. Kaningen, Jonas Kaningen

Abstract:

This paper aims to discover the best ways to improve production efficiency, cost efficiency, community cohesion, and long-term sustainability in Ghana's housing delivery. Advanced Construction Technologies (ACTs) are set to become the sustainable mainstay of the construction industry due to the demand for innovative housing solutions. Advances in material science, building component production, and assembly technologies are leading to the development of next-generation materials such as polymeric-fiber-based products, light-metal alloys, and eco-materials. Modular housing construction has become more efficient and cost-effective than traditional building methods and is becoming increasingly popular for commercial, industrial, and residential projects. Effective project management and logistics will be imperative in the future speed and cost of modular construction housing.

Keywords: technology blending, sustainability, housing, Ghana

Procedia PDF Downloads 87
9959 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 369
9958 Possibilities and Challenges for District Heating

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.

Keywords: district heating, sustainable business strategies, sustainable development, system approach

Procedia PDF Downloads 84
9957 Measuring Entrepreneurial Success through Specific Sustainable Development Goals by Linking Entrepreneurship Attitude and Intentions

Authors: Mohit Taneja, Ravi Kiran, S. C. Bose

Abstract:

Entrepreneurs’ role in achieving Sustainable development goals is crucial as the growth potential of any region depends upon the number and the success rate of entrepreneurial firms. This paper is an effort to examine the relationship between Sustainable growth (SG) with Entrepreneurial attitude (EA) and Entrepreneurial intention (EI) in the context of the Indian economy. The mediation effect of EI between EA and SG has been considered. Partial least square (PLS) –Structural Equation Model (SEM) software was used to design the framework. Students enrolled in entrepreneurship courses of higher educational institutes (HEI) of Punjab, Haryana, and the National Capital Region NCR were contacted for data collection. The National Institutional Ranking Framework (NIRF) framework was used in selecting HEIs and data collected from 589 students was considered for analysis. McGee’s multi-dimensional scale for measuring ESE and the scale of Linan & Chen for measuring EI & ES (SG) was used. Results highlight that EA has a strong impact on EI (p≤ 0.001) and EI has a positive and strong relationship with SG (ES) as β value for the same is 0.683 (p≤ 0.001). The current study also reflects the mediating effect of EI among EA and ES, as the results show that the combined β value of both EA and EI (i.e.0.684*0.683= 0.467) is more than the direct influence of EA on ES (β=0.265). EA, with the mediating effect of EI can enhance the opportunity for achieving SG, which suggests that in order to increase the venture success rate and to attain SG, emphasis should be given to EI along with EA. The study has been investigated in three regions of India. Future studies can be extended to other South Asian countries for generalization.

Keywords: entrepreneurship, sustainable growth, entrepreneurship intention, entrepreneurship attitude

Procedia PDF Downloads 94
9956 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park

Abstract:

Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.

Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb

Procedia PDF Downloads 732
9955 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
9954 CFD Analysis of Solar Floor Radiant Heating System with ‎PCM

Authors: Mohammad Nazififard, Reihane Faghihi

Abstract:

This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

Keywords: solar floor, heating system, phase change material, computational fluid dynamics

Procedia PDF Downloads 245
9953 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper

Authors: M. Parvez Alam, M. Bilal Khan

Abstract:

Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.

Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag

Procedia PDF Downloads 316
9952 Characterization of Shrinkage-Induced Cracking of Clay Soils

Authors: Ahmad El Hajjar, Joanna Eid, Salima Bouchemella, Tariq Ouahbi, Benoit Duchemin, Said Taibi

Abstract:

In our present society, raw earth presents an alternative as an energy-saving building material for dealing with climate and environmental issues. Nevertheless, it has a sensitivity to water, due to the presence of fines, which has a direct effect on its consistency. This can be expressed during desiccation, by shrinkage deformations resulting in cracking that begins once the internal tensile stresses developed, due to suction, exceed the tensile strength of the material. This work deals with the evolution of the strain of clay samples, from the beginning of shrinkage until the initiation of crack, using the DIC (Digital Image Correlation) technique. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and depending on the intrinsic characteristics of the material. On the other hand, a study of restrained shrinkage is carried out on the ring test to investigate the ultimate tensile strength from which the crack begins in the dough of clay. The purpose of this test is to find the type of reinforcement adapted to thwart in the cracking of the material. A microscopic analysis of the damaged area is necessary to link the macroscopic mechanisms of cracking to the various physicochemical phenomena at the microscopic scale in order to understand the different microstructural mechanisms and their impact on the macroscopic shrinkage.

Keywords: clayey soil, shrinkage, strain, cracking, digital image correlation

Procedia PDF Downloads 161
9951 Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder

Authors: Mohammed Abed, Rita Nemes

Abstract:

In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount.

Keywords: cellular concrete powder, waste cellular concrete powder (WCCP), supplementary cementatious material, SCM, activity index, mechanical properties

Procedia PDF Downloads 219
9950 Comparative Study of Stone Column with and without Encasement Using Waste Aggregate

Authors: V. K. Stalin, V. Paneerselvam, M. Bharath, M. Kirithika

Abstract:

In developing countries like India due to the rapid urbanization, large amount of waste materials are produced every year. These waste materials can be utilized in the improvement of problematic soils. Stone column is one of the best methods to improve soft clay deposits. In this study, load tests were conducted to ensure the suitability of waste as column materials. The variable parameters studied are material, number of column and encasement. The materials used for the study are stone aggregate, copper slag, construction waste, for one, two and three number of columns with geotextile and geogrid encasement. It was found that the performance of waste as column material are comparable to that of conventional stone column with and without encasement. Hence, it is concluded that the copper slag and construction waste may be used as a column material in place of conventional stone aggregate to improve the soft clay advantage being utilization of waste.

Keywords: stone column, geocomposite, construction waste, copper slag

Procedia PDF Downloads 380