Search results for: student performance prediction
15695 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 9915694 Effect of Communication Pattern on Agricultural Employees' Job Performance
Authors: B. G. Abiona, E. O. Fakoya, S. O. Adeogun, J. O. Blessed
Abstract:
This study assessed the influence of communication pattern on agricultural employees’ job performance. Data were collected from 61 randomly selected respondents using a structured questionnaire. Perceived communication pattern that influence job performance include: the attitude of the administrators (x̅ = 3.41, physical barriers to communication flow among employees (x̅ = 3.21). Major challenges to respondents’ job performance were different language among employees (x̅ = 3.12), employees perception on organizational issues (x̅ = 3.09), networking (x̅ = 2.88), and unclear definition of work (x̅ = 2.74). A significant relationship was found between employees’ perceived communication pattern (r = 0.423, p < 0.00) and job performance. Information must be well designed in such a way that would positively influence employees’ job performance as this is essential in any agricultural organizations.Keywords: communication pattern, job performance, agricultural employees, constraint, administrators, attitude
Procedia PDF Downloads 36215693 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 12615692 The Relationship between the Competence Perception of Student and Graduate Nurses and Their Autonomy and Critical Thinking Disposition
Authors: Zülfiye Bıkmaz, Aytolan Yıldırım
Abstract:
This study was planned as a descriptive regressive study in order to determine the relationship between the competency levels of working nurses, the levels of competency expected by nursing students, the critical thinking disposition of nurses, their perceived autonomy levels, and certain socio demographic characteristics. It is also a methodological study with regard to the intercultural adaptation of the Nursing Competence Scale (NCS) in both working and student samples. The sample of the study group of nurses at a university hospital for at least 6 months working properly and consists of 443 people filled out questionnaires. The student group, consisting of 543 individuals from the 4 public university nursing 3rd and 4th grade students. Data collection tools consisted of a questionnaire prepared in order to define the socio demographic, economic, and personal characteristics of the participants, the ‘Nursing Competency Scale’, the ‘Autonomy Subscale of the Sociotropy – Autonomy Scale’, and the ‘California Critical Thinking Disposition Inventory’. In data evaluation, descriptive statistics, nonparametric tests, Rasch analysis and correlation and regression tests were used. The language validity of the ‘NCS’ was performed by translation and back translation, and the context validity of the scale was performed with expert views. The scale, which was formed into its final structure, was applied in a pilot application from a group consisting of graduate and student nurses. The time constancy of the test was obtained by analysis testing retesting method. In order to reduce the time problems with the two half reliability method was used. The Cronbach Alfa coefficient of the scale was found to be 0.980 for the nurse group and 0.986 for the student group. Statistically meaningful relationships between competence and critical thinking and variables such as age, gender, marital status, family structure, having had critical thinking training, education level, class of the students, service worked in, employment style and position, and employment duration were found. Statistically meaningful relationships between autonomy and certain variables of the student group such as year, employment status, decision making style regarding self, total duration of employment, employment style, and education status were found. As a result, it was determined that the NCS which was adapted interculturally was a valid and reliable measurement tool and was found to be associated with autonomy and critical thinking.Keywords: nurse, nursing student, competence, autonomy, critical thinking, Rasch analysis
Procedia PDF Downloads 39715691 Simon Says: What Should I Study?
Authors: Fonteyne Lot
Abstract:
SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.Keywords: academic success, online self-assessment, student retention, vocational choice
Procedia PDF Downloads 40515690 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim Fares Zaidi
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: ARSDS, HTK, HMM, MFCC, PLP
Procedia PDF Downloads 11015689 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers
Procedia PDF Downloads 17815688 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 15215687 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 17315686 Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)
Authors: Witthaya Mekhum, Wutthikorn Malikong
Abstract:
The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc.Keywords: overclock, performance, central processing unit, computer
Procedia PDF Downloads 28315685 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14315684 Student's Difficulties with Classes That Involve Laboratory Education Approach
Authors: Kayondoamunmose Kamafrika
Abstract:
Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.Keywords: experimental, engineering, innovation, practicability
Procedia PDF Downloads 19015683 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 15315682 An Evaluation of a Student Peer Mentoring Program
Authors: Nazeema Ahmed
Abstract:
This paper reports on the development of a student peer mentoring programme at a higher education institution. The programme is dependent on volunteering senior undergraduate students who are trained to mentor first-year students studying towards an engineering degree. The evaluation of the programme took the form of first-year students completing a self-report paper questionnaire at the onset of a lecture and mentors completing their questionnaire electronically. The evaluation yielded mixed findings. Peer mentoring clearly benefited some students in their adjustment to the institution. Specific mentors’ personal attributes enabled the establishment of successful mentoring relationships, where encouragement, advice and academic assistance was provided. Gains were reciprocal with mentors reporting that the programme contributed towards their personal development. Confidence in the programme was expressed in mentors feeling that it was an initiative worth continuing and first-year students agreeing that it be recommended to future first-year students. This was despite many unfavourable experiences of mentors where their professionalism and commitment to the programme was suspect. It is evident that while mentors began with noble intentions they appear either to lose interest or become overwhelmed with their own workload as the academic year progresses. On the other hand, some mentors reported feeling challenged by the apathy of first-year students who failed to maximise the opportunity available to them. The different attitudes towards mentoring that manifested as a mentoring culture in some departments were particularly pertinent to its successful implementation. The findings point to the key role of academic staff in the mentoring programme who model the mentoring relationship in their interaction with student mentors. While their involvement in the programme may be perceived as a drain on resources in an already demanding academic teaching environment, it is imperative that structural changes be put in place for the programme to be both efficient and sustainable. A pervasive finding concerns the evolving institutional culture of student development in the faculty. Mentors and first-year students alike alluded to the potential of the mentoring programme provided it is seriously endorsed at both the departmental and faculty level. The findings provide a foundation from which to develop the programme further and to begin improving its capacity for maximizing student retention in South African higher education.Keywords: engineering students, first-year students, peer mentoring
Procedia PDF Downloads 25415681 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration
Authors: Marimuthu Gurusamy
Abstract:
In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration
Procedia PDF Downloads 45115680 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 10015679 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 10115678 Using Scrum in an Online Smart Classroom Environment: A Case Study
Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr
Abstract:
The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences, and styles of the digital generation of students recently. Further, the onset of the coronavirus disease (COVID-19) pandemic has resulted in online teaching being mandatory. These changes have compounded the problems in the learning engagement and short attention span of HE students. New agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.Keywords: agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning
Procedia PDF Downloads 16315677 Exploring Faculty Attitudes about Grades and Alternative Approaches to Grading: Pilot Study
Authors: Scott Snyder
Abstract:
Grading approaches in higher education have not changed meaningfully in over 100 years. While there is variation in the types of grades assigned across countries, most use approaches based on simple ordinal scales (e.g, letter grades). While grades are generally viewed as an indication of a student's performance, challenges arise regarding the clarity, validity, and reliability of letter grades. Research about grading in higher education has primarily focused on grade inflation, student attitudes toward grading, impacts of grades, and benefits of plus-minus letter grade systems. Little research is available about alternative approaches to grading, varying approaches used by faculty within and across colleges, and faculty attitudes toward grades and alternative approaches to grading. To begin to address these gaps, a survey was conducted of faculty in a sample of departments at three diverse colleges in a southeastern state in the US. The survey focused on faculty experiences with and attitudes toward grading, the degree to which faculty innovate in teaching and grading practices, and faculty interest in alternatives to the point system approach to grading. Responses were received from 104 instructors (21% response rate). The majority reported that teaching accounted for 50% or more of their academic duties. Almost all (92%) of respondents reported using point and percentage systems for their grading. While all respondents agreed that grades should reflect the degree to which objectives were mastered, half indicated that grades should also reflect effort or improvement. Over 60% felt that grades should be predictive of success in subsequent courses or real life applications. Most respondents disagreed that grades should compare students to other students. About 42% worried about their own grade inflation and grade inflation in their college. Only 17% disagreed that grades mean different things based on the instructor while 75% thought it would be good if there was agreement. Less than 50% of respondents felt that grades were directly useful for identifying students who should/should not continue, identify strengths/weaknesses, predict which students will be most successful, or contribute to program monitoring of student progress. Instructors were less willing to modify assessment than they were to modify instruction and curriculum. Most respondents (76%) were interested in learning about alternative approaches to grading (e.g., specifications grading). The factors that were most associated with willingness to adopt a new grading approach were clarity to students and simplicity of adoption of the approach. Follow-up studies are underway to investigate implementations of alternative grading approaches, expand the study to universities and departments not involved in the initial study, examine student attitudes about alternative approaches, and refine the measure of attitude toward adoption of alternative grading practices within the survey. Workshops about challenges of using percentage and point systems for determining grades and workshops regarding alternative approaches to grading are being offered.Keywords: alternative approaches to grading, grades, higher education, letter grades
Procedia PDF Downloads 9615676 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 25615675 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 9515674 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF
Authors: Duangkamol Thitivesa
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.Keywords: Thailand quality framework, project Work, writing skill, summative
Procedia PDF Downloads 15115673 A National Survey of Clinical Psychology Graduate Student Attitudes toward Psychotherapy Treatment Manuals: A Replication Study
Authors: B. Bergström, A. Ladd, A. Jones, L. Rosso, P. Michael
Abstract:
Attitudes toward treatment manuals serve as a meaningful predictor of general attitudes toward evidence-based practice. Despite demonstrating high effectiveness in treating many mental disorders, manualized treatments have been underutilized by practitioners. Thus, one can assess the state of the field regarding the adoption of evidence-based practices by surveying practitioner attitudes towards manualized treatments. This study is an adapted replication that assesses psychology graduate student attitudes towards manualized treatments, as a general marker for attitudes towards evidence-based practice. Training programs provide future clinicians with the foundation for critical skills in clinical practice. Research demonstrates that post-graduate continuing education has little to no effect on clinical practice; thus, graduate programs serve as the primary, and often final platform for all future practice. However, there are little empirical data identifying the attitudes and training of graduate students in utilizing manualized treatments. The empirical analysis of this study indicates an increase in positive attitudes among graduate student attitudes towards manualized treatments (within the United States), when compared to past surveys of professional psychologists. Findings from this study may inform graduate programs of barriers for students in developing positive attitudes toward manualized treatments and evidence-based practice. This study also serves as a preliminary predictor of the state-of-the field, in regards to professional psychologists attitudes towards evidence-based practice, if attitudes remain stable. This study indicates that the attitudes toward utilizing evidence-based practices, such as treatment manuals, has become more positive since year 2000.Keywords: exposure therapy, evidence based practice, manualized treatments, student attitudes
Procedia PDF Downloads 16315672 Prediction of Coronary Heart Disease Using Fuzzy Logic
Authors: Elda Maraj, Shkelqim Kuka
Abstract:
Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model
Procedia PDF Downloads 16315671 The Revised Completion of Student Internship Report by Goal Mapping
Authors: Faizah Herman
Abstract:
This study aims to explore the attitudes and behavior of goal mapping performed by the student in completing the internship report revised on time. The approach is phenomenological research with qualitative methods. Data sources include observation, interviews and questionnaires, focus group discussions. Research subject 5 students who have completed the internship report revisions in a timely manner. The analysis technique is an interactive model of Miles&Huberman data analysis techniques. The results showed that the students have a goal of mapping that includes the ultimate goal, formulate goals by identifying what are the things that need to be done, action to be taken and what kind of support is needed from the environment.Keywords: goal mapping, revision internship report, students, Brawijaya
Procedia PDF Downloads 39615670 The Passive Recipient – How the Pupil Comes across in Local Swedish Health Policy Documents
Authors: Zofia Hammerin, Goran Basic, Disa Bergnehr
Abstract:
Ever since the Ottawa charter in 1986, health promotion through schools has been stressed across the globe. Both in the global and national discourse, schools are made responsible not only for providing education but also for working with pupil health and well-being. In Sweden, where the study is set, it is emphasized in national directives that promoting pupil health should be part of the school practice. Since the Swedish school system is decentralized, these directives need to be interpreted and recontextualized locally. This study aims to explore how the student comes across in Swedish local health policy documents. The data consists of 37 such documents called student health plans collected from different high schools throughout Sweden. The analysis was inspired by critical discourse analysis, and tentative results are divided into two main themes; the invisible actor and the passive recipient. The pupil is largely invisible in the documents, and the discourse instead focuses on school health service staff and, to some extent, the teachers. When the pupils are visible, they mainly come across as passive recipients of health promoting actions. Since participation, taking action, and feeling empowered are key aspects of health promotion, the findings could impact the pupils’ possibilities for health and well-being.Keywords: health promotion, high school, student, sweden
Procedia PDF Downloads 10215669 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets
Authors: Abdullah Al Faruque, Ram Balachandar
Abstract:
Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time
Procedia PDF Downloads 43615668 The Effect of Integrated Reporting on Corporate Financial Performance: A Bibliometric Analysis
Authors: Adhila Sandra Devy, Evangeline Syalomita Silitonga
Abstract:
The landscape of corporate governance and accountability has led to the emergence of Integrated Reporting (IR) in response to the shortcomings of traditional reporting frameworks. Developed by The International Integrated Reporting Council (IIRC), IR aims to offer stakeholders a comprehensive view of a company’s performance by integrating financial and non-financial disclosures. This study analyzes literature on Integrated Reporting and Corporate Financial Performance from 2013 to 2024, employing a descriptive analysis methodology. 31 relevant articles were gathered from various sources, indicating a positive correlation between integrated reporting and financial performance, albeit without conclusive evidence of long-term impact.Keywords: integrated reporting, corporate financial performance, corporate performance, firm performance, bibliometric analysis
Procedia PDF Downloads 4615667 Language Services as a Means of Language Repository for Tuition Support and Facilitation of Learning in Institution of Higher Learning
Authors: Mzamani Aaron Mabasa
Abstract:
The research study examines the reality that the Language Services Directorate can be considered a language repository hub. The study postulates that multilingual education guided by language policy implementation can improve student performance and pass rate. Various documents in the form of style guides, glossaries and tutorial letters may be used to enable students to understand complex words, sentences, phrases and paragraphs when technical vocabularies are used. This paper addresses the way in which quality assurance can transform South African official languages, including Sign Language, as mandated by the Language Policy for Higher Education. The paper further emphasizes that Language Services is unique in the sense that it involves all South African officials as tools for student support and facilitation of learning. This is in line with the Constitution of the Republic of South Africa (1996) and the Unisa Language Policy of 2023, which declares the status, parity and esteem of these official languages regarding usage in formal function domains, namely education, economy, social and politics. The aim of this paper is to ensure that quality assurance is ultimately accomplished in terms of teaching and learning standards. Eventually, all South African languages can be used for official domains to achieve functional multilingualism. This paper furthermore points out that content analysis as a research instrument as far as a qualitative approach is concerned may be used as a data collection technique.Keywords: repository, multilingualism, policy, education
Procedia PDF Downloads 3515666 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence
Procedia PDF Downloads 504