Search results for: sand underlain with clay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1242

Search results for: sand underlain with clay

342 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 123
341 Mobility and Speciation of Iron in the Alluvial Sheet of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili

Abstract:

Iron is naturally present in groundwater, it comes from the dissolution of the geological formations (clay, schist, mica-schist, gneiss…). Its chemical form and mobility in water are controlled mainly by two physicochemical parameters (Eh and pH). In order to determine its spatiotemporal evolution in groundwater, a two-monthly monitoring of the physicochemical parameters and major elements in the water of the alluvial sheet of Nil river (North-eastern Algerian) was carried out during the period from November 2013 to January 2015. The results show that iron is present in weak concentrations in the upstream part of the alluvial sheet and with raised concentrations, which can exceed the standard of potable drinking water (0.2 mg/L), in the central and downstream parts of the alluvial sheet. This variation of the concentrations is related to the important variation of Eh between the upstream part (200 mV) where the aquiver is unconfined (oxidizing medium) and the central and downstream parts (-100 mV) where the aquifer is confined (reducing medium). Iron in the oxidizing part is presented with the complexes form, where it precipitates or/and adsorbed by the geological formations. On the other hand in the reducing parts, it is released in water. In this study, one will discuss also the mobility and the chemical forms of iron according to the rains and pumping.

Keywords: groundwater, iron, mobility, speciation

Procedia PDF Downloads 315
340 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 122
339 Treatment of Greywater at Household by Using Ceramic Tablet Membranes

Authors: Abdelkader T. Ahmed

Abstract:

Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.

Keywords: ceramic membranes, filtration, greywater, wastewater treatment

Procedia PDF Downloads 312
338 Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete

Authors: Kwabena A. Boakye, Eugene Atiemo, Trinity A. Tagbor, Delali Adjei

Abstract:

The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete.

Keywords: admixture, granite dust, permeability, pozzolans

Procedia PDF Downloads 135
337 Effect of Graphene Oxide Nanoparticles on a Heavy Oilfield: Interfacial Tension, Wettability and Oil Displacement Studies

Authors: Jimena Lizeth Gomez Delgado, Jhon Jairo Rodriguez, Nicolas Santos, Enrique Mejia Ospino

Abstract:

Nanotechnology has played an important role in the hydrocarbon industry, recently , due to the unique properties of graphene oxide nanoparticles, they have been incorporated in different studies enhanced oil recovery. Nonetheless, very few studies have used graphene oxide nanoparticles in coreflooding experiments. Herein, the use of Graphene oxide (GO) nanoparticle was explored, exploited and evaluated. The performance of Graphene oxide nanoparticles on the interfacial properties in the presence of different electrolyte concentrations representative of field brine and pH conditions was investigated. Moreover, wettability behavior of the nanofluid at the oil/sand interface was studied used contact angle and Amott Harvey evaluation. Experimental result shows that the adsorption of GO on the sandstone surface changes the wettability of the sandstone from being strongly crude oil-wet to intermediate crude oil-wettability. At 900 ppm formation brine with 8 pH solution and 0.09 wt% nanoparticles concentration, Graphene oxide nanofluid exhibited better performance under the different electrolyte concentration studied. Finally, heavy oil displacement test in sandstone cores showed that oil recovery of Graphene oxide nanofluid had 7% incremental oil recovery over conventional waterflooding.

Keywords: nanoparticle, graphene oxide, nanotechnology, wettability, enhanced oil recovery, coreflooding

Procedia PDF Downloads 92
336 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 346
335 Walls, Barriers, and Fences to Informal Political Economy of Land Resource Accesses: A Case of Banyabunagana Along with Uganda–Congo Border, South Western Uganda, Kisoro District

Authors: Niringiye Fred

Abstract:

Banyabunagana has always had access to land resources for grazing animals, sand mining, and farmland across the border in the Democratic Republic of Congo during the pre-colonial and colonial times, usually on an informal arrangement facilitated by kinship ties and rent transactions for these resources. However, in recent periods, the government of the Democratic Republic of the Congo (DRC) has been pursuing a policy of constructing barriers such as walls and fences so that Banyabunagana communities do not access the land on the DRC side of the border. This is happening in the background of increased and intensified demand for land use on the side of the Ugandan community. This paper will attempt to discuss the reasons behind the construction of walls, fences, and other barriers which deny access to land for Banyabunagana communities in Bunagana Parish, Muramba Sub-county- Kisoro district, Uganda. The research will attempt to answer the following main questions, among others, whether there are the factors that explain the construction of walls and fences which could limit or deny access to the informal use of land and other resources and whether policy options to ensure continued access to land and other resources for local communities.

Keywords: border, walls, fences, land resource access

Procedia PDF Downloads 89
334 Esterification Reaction of Stearic Acid with Methanol Over Surface Functionalised PAN Fibrous Solid Acid Catalyst

Authors: Rawaz A. Ahmed, Katherine Huddersman

Abstract:

High-lipid Fats, Oils and Grease (FOGs) from wastewater are underutilized despite their potential for conversion into valuable fuels; this work describes a surface-functionalized fibrous Polyacrylonitrile (PAN) mesh as a novel heterogeneous acid catalyst for the conversion of free fatty acids (FFAs), via a catalytic esterification process into biodiesel. The esterification of stearic acid (SA) with methanol was studied over an acidified PAN solid acid catalyst. Disappearance of the carboxylic acid (C=O) peak of the stearic acid at 1696 cm-1 in the FT-IR spectrum with the associated appearance of the ester (C=O) peak at 1739 cm-1 confirmed the production of the methyl stearate. This was further supported by 1H NMR spectra with the appearance of the ester (-CH₂OCOR) at 3.60-3.70 ppm. Quantitate analysis by GC-FID showed the catalyst has excellent activity with >95 % yield of methyl stearate (MS) at 90 ◦C after 3 h and a molar ratio of methanol to SA of 35:1. To date, to our best knowledge, there is no research in the literature on the esterification reaction for biodiesel production using a modified PAN mesh as a catalyst. It is noteworthy that this acidified PAN mesh catalyst showed comparable activity to conventional Brönsted acids, namely H₂SO₄ and p-TSA, as well as exhibiting higher activity than various other heterogeneous catalysts such as zeolites, ion-exchange resins and acid clay.

Keywords: fats oil and greases (FOGs), free fatty acid, esterification reaction, methyl ester, PAN

Procedia PDF Downloads 208
333 Effect of Bored Pile Diameter in Sand on Friction Resistance

Authors: Ashraf Mohammed M. Eid, Hossam El Badry

Abstract:

The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity.

Keywords: large piles, static formula, friction piles, sandy soils

Procedia PDF Downloads 474
332 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound

Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil

Abstract:

Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.

Keywords: backfill material, bentonite, grounding material, low resistivity

Procedia PDF Downloads 128
331 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa

Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke

Abstract:

The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.

Keywords: characterization, land capability, land evaluation, land potential

Procedia PDF Downloads 174
330 Moisture Impact on the Utilization of Recycled Concrete Fine Aggregate to Produce Mortar

Authors: Rahimullah Habibzai

Abstract:

To achieve a sustainable concrete industry, reduce exploitation of the natural aggregate resources, and mitigate waste concrete environmental burden, one way is to use recycled concrete aggregate. The utilization of low-quality fine aggregate inclusively recycled concrete sand that is produced from crushing waste concrete recently has become a popular and challenging topic among researchers nowadays. This study provides a scientific base for promoting the application of concrete waste as fine aggregate in producing concrete by conducting a comprehensive laboratory program. The mechanical properties of mortar made from recycled concrete fine aggregate (RCFA), that is produced by pulse power crushing concrete waste are satisfactory and capable of being utilized in the construction industry. A better treatment of RCFA particles and enhancing its quality will make it possible to be utilized in producing structural concrete. Pulse power discharge technology is proposed in this research to produce RCFA, which is a more effective and promising technique compared to other recycling methods to generate medium to high-quality recycled concrete fine aggregate with a reduced amount of powder, mitigate the environmental burden, and save more space.

Keywords: construction and demolition waste, concrete waste recycle fine aggregate, pulse power discharge

Procedia PDF Downloads 128
329 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management

Procedia PDF Downloads 224
328 Changing Social Life of the Potters of Nongpok Sekmai in Manipur, India

Authors: Keisham Ingocha Singh, Mayanglambam Mani Babu, Lorho Mary Maheo

Abstract:

Background: The tradition of the development of pottery through the handling of clay is one of the earliest skills known to the Chakpas of Manipur. Nongpok Sekmai, a Chakpa village in Thoubal district of Manipur, India, is strictly associated with making pots of red ochre colour called uyan. In the past, pottery was in great demand, each family needed them in rituals, festive occasions and also for day to day use. The whole village was engaged in the occupation of pot making. However the tradition of pottery making is fast declining. People have switched over to other economic activities which can provide them a better socioeconomic life leaving behind the age-old tradition of pottery occupation. The present study was carried out to find out the social life of the potters of Nongpok Sekmai. Materials and Method: In-depth interviews, household survey and observation were conducted to collect information on the pottery trend in the village. Results: The total population of the surveyed village is 1194 persons out of which 582 are male and 612 are female, distributed through 252 households. At present 4.94 % of the total population are still engaged in this profession. The study recorded 19 occupations other than pottery among women indicating decline of the traditional occupation. Conclusion: The study has revealed the changing life of the potters due to technological development, globalization and social network.

Keywords: Chakpas, Nongpok Sekmai, pottery, uyan

Procedia PDF Downloads 201
327 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 137
326 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests

Authors: Monalisha Nayak, T. G. Sitharam

Abstract:

Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.

Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)

Procedia PDF Downloads 215
325 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 350
324 Seasonal Profile of the Feeding Ecology of Auchenoglanis Occidentalis from Tagwai Lake, Minna Niger State, Nigeria

Authors: V. I. Chukwuemeka, S. M. Tsadu, R. O. Ojutiku, R. J. Kolo

Abstract:

The food and feeding habits of Auchenoglanis occidentalis, which is commonly called the “BuBu” cat fish or the giraffe cat fish from Tagwai Lake Minna, was analysed from January to June, 2013. A total of 216 fish specimen were used for the study which were obtained from the local fishermen operating in Tagwai Lake Minna. Fishing gears used include cast nets and gills nets of various sizes. They also use hook and lines. The frequency of occurrence and dominance method were used to analyse the food in the gut. Auchenoglanis occidentalis from Tagwai Lake, Minna had a broad spectrum of food items in the gut, ranging from insects, fish, plant materials to protozoan. The percentage of insects was (31.75%), fish (12.70%), Chyme (20.63%), plant materials (20.63%), protozoa (1.59%) and soil (12.70%). The presence of different food items in the gut of the Auchenoglanis occidentalis which ranged from animal to plant and soil made it to be considered as an omnivore bottom feeder. The food habits of this fish showed no remarkable difference between the dry season months and the rainy season months. The broad food spectrum of the fish makes them a good aquaculture candidate. It also suggests that the specie feed both in surface water and near the substratum (sand).

Keywords: Auchenoglanis occidentalis, ecology, Tagwai Lake, Nigeria

Procedia PDF Downloads 552
323 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon

Procedia PDF Downloads 119
322 Preparation and Characterization of Iron/Titanium-Pillared Clays

Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea

Abstract:

The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.

Keywords: iron doping, montmorillonite clays, pillared clays, oil industry

Procedia PDF Downloads 289
321 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils

Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom

Abstract:

Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.

Keywords: electrical resistivity, clayey soil, physical properties, shear properties

Procedia PDF Downloads 257
320 Influence of Cathodic Protection on High Strength, Pre-Stressed Corroded Tendons

Authors: Ibrahim R. Elomari, Fin O'Flaherty, Ibrahim R. Elomari, Paul Lambert

Abstract:

Cathodic protection (CP) is a technique commonly used to arrest corrosion of steel in infrastructure. However, it is not generally used on high strength, pre-stressed tendons due to the risk of hydrogen generation, leading to possible embrittlement. This paper investigates its use in such circumstances where the applied protection potential is varied to determine if CP can be safely employed on pre-stressed tendons. Plain steel tendons measuring 5.4 mm diameter were pre-stressed in timber moulds and embedded in sand/cement mortar, formulated to represent gunite. Two levels of pre-stressing were investigated (400MPa and 1200MPa). Pre-corrosion of 0% (control), 3% and 6% target loss of cross-sectional area was applied to replicate service conditions. Impressed current cathodic protection (ICCP) was then applied to the tendons at two levels of potential to identify any effect on strength. Instant-off values up to -950mV were used for normal protection with values of -1100mV or more negative to achieve overprotection. Following the ICCP phase, the tendons were removed from the mortar, cleaned and weighed to confirm actual percentage of corrosion. Tensile tests were then conducted on the tendons. The preliminary results show the influence of normal levels and overprotection of CP on the ultimate strength of the tendons.

Keywords: pre-stressed concrete, corrosion, cathodic protection, hydrogen embrittlement

Procedia PDF Downloads 245
319 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)

Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine

Abstract:

Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca

Procedia PDF Downloads 86
318 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate

Authors: Nadjoua Bourmatte, Hacène Houari

Abstract:

Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.

Keywords: concrete, environment, glass waste, recycling

Procedia PDF Downloads 212
317 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions

Authors: Muthana A. M. Jamel Al-Gburi

Abstract:

Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.

Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level

Procedia PDF Downloads 60
316 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical

Procedia PDF Downloads 295
315 Experiments with Saggar Application in Traditional Indian Pottery

Authors: Arman Ovla, Satyaki Roy, Shatrupa T. Roy

Abstract:

India is known for the richness of its tradition and cultural heritage. The practice of crafts like pottery and terracotta has a long-standing history. Some of the oldest specimens of fine pottery were excavated from the ancient sites of Indus-valley settlements dating back to 4000 years. There are so many techniques and styles which have developed through time. Pottery with red clay and low firing is one of the oldest branches of ceramic which is still being made in India in large quantities. This study is based on field research carried out in two large pottery clusters. The traditional potters of Pahari in Rajasthan and Nizamabad in Uttar Pradesh are baking pots with the help of saggar containers and creating products quite different from others. The potters of Prajapati community residing in both places have been engaged in the art of making pottery for ages. The knowledge of pottery and associated skills are passed on from one generation to the next. They use only the local material available in their vicinity and adapt the design and decorations to create an identity that is deeply rooted in their origins. For the purpose of this research, pure qualitative research methodology was followed with field visits and data collection from Pahari and Nizamabad. Observations and notes made from non-intrusive techniques and direct interview methods of existing potters residing in the region. This paper on Saggar pottery describes the tools and techniques, methods and materials, the firing process, and indigenous stylistic attributes.

Keywords: Saggar, smoke firing, black pottery, Nizamabad, Pahari

Procedia PDF Downloads 59
314 Food and Feeding Habit of Clarias anguillaris in Tagwai Reservoir, Minna, Niger State, Nigeria

Authors: B. U. Ibrahim, A. Okafor

Abstract:

Sixty-two (62) samples of Clarias anguillaris were collected from Tagwai Reservoir and used for the study. 29 male and 33 female samples were obtained for the study. Body measurement indicated that different sizes were collected for the study. Males, females and combined sexes had standard length and total length means of 26.56±4.99 and 31.13±6.43, 27.17±5.21 and 30.62±5.43, 26.88±5.08 and 30.86±5.88 cm, respectively. The weights of males, females and combined sexes have mean weights of 241.10±96.27, 225.75±78.66 and 232.93±86.95 gm, respectively. Eight items; fish, insects, plant materials, sand grains, crustaceans, algae, detritus and unidentified items were eaten as food by Clarias anguilarias in Tagwai Reservoir. Frequency of occurrence and numerical methods used in stomach contents analysis indicated that fish was the highest, followed by insect, while the lowest was the algae. Frequency of stomach fullness of Clarias anguillaris showed low percentage of empty stomachs or stomachs without food (21.00%) and high percentage of stomachs with food (79.00%), which showed high abundance of food and high feeding intensity during the period of study. Classification of fish based on feeding habits showed that Clarias anguillaris in this study is an omnivore because it consumed both plant and animal materials.

Keywords: stomach content, feeding habit, Clarias anguillaris, Tagwai Reservoir

Procedia PDF Downloads 573
313 Depositional Environment of the Babouchite Rocks of Numidian Formation, Northwestern Tunisia: Mineralogical Study and Geochemical Properties

Authors: Ben Yahia Nouha, Harris Chris, Boussen Slim, Chaabani Fredj

Abstract:

The present work has set itself the objective of studying non-detritic siliceous rocks in the extreme northwestern of Tunisia. It aims to discuss the origin and depositional environment of siliceous rocks based on petrographic, mineralogical, and geochemical results. The different sections were made in the area of Babouch and the area of Cap-Serrat. The collected samples were subjected to petrographic, mineralogical, and geochemical characterization using different analytical methods: scanning electron microscopy (SEM), X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ¹⁸O) to assess their suitability for industrial use. These babouchite shows that the mineralogy consists of quartz as the dominant mineral with the total lack of amorphous silica, while clay represents the minor phase. The petrographic examination revealed allowed to deduce that it is a rock of chemical origin deriving from tests of siliceous organisms (the radiolarians). Chemical analyzes show that SiO₂, Al₂O₃, and Fe₂O₃ represent the most abundant oxides. The other oxides are present in negligible quantity. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites are formed in an environment with a high temperature, ranging from 56°C to 73°C.

Keywords: siliceous rocks, babouchite formation, XRD, chemical analysis, isotopic geochemistry, Northwestern of Tunisia

Procedia PDF Downloads 140