Search results for: prediction fatigue life
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9905

Search results for: prediction fatigue life

9005 Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus)) (Diptera: Culicidae) in Penang Island, Malaysia

Authors: A. H. Maimusa, A. Abu Hassan, Nur Faeza A. Kassim

Abstract:

In this study, we report on the main life table developmental attributes of laboratory colonies of wild strains Ae. albopictus and Ae. aegypti. The raw life history data of the two species were analyzed and compared based on the age-stage and two-sex life table. The total pre-adult development times were 9.47 days (Ae. albopictus) and 8.76 days (Ae. aegypti). The adult pre-oviposition periods (APOP) was 1.61 day for Ae. albopictus and 2.02 for Ae. aegypti. The total pre-oviposition period (TPOP) of Ae. albopictus is significantly longer (11.66 days) than (10.75 days) for Ae. aegypti. The mean intrinsic rate of increase (r) was 0.124 days (Ae. albopictus) and 1.151 days (Ae. aegypti) while the mean finite rate of increase (λ) was 1.13 day (Ae. albopictus) and (1.16 d) (Ae. aegypti). The net reproductive rates (Ro) were 8.10 and 10.75 for Ae. albopictus and Ae. aegypti, respectively. The mean generation time (T) for Ae. albopictus and Ae. aegypti, were 16.81 days and 15.77 days respectively. The mean development time for each stage insignificantly correlated with temperature (r = -0.208, p > 0.05) and (r = -0.312, p > 0.05) for Ae. albopictus and Ae. aegypti respectively. The life expectancy was 19.01 and 19.94 days for Ae. albopictus and Ae. aegypti respectively. Mortality occurred mostly during the adult stage and ranged between 0.01 and 0.07%. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategist characterized by a high r, a large Ro, and short T. This kind of information is crucial in understanding mosquito population dynamics in disease transmission and control.

Keywords: Ae. aegypti, Ae. albopictus, age-stage, life table, two-sex

Procedia PDF Downloads 321
9004 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace

Authors: Sang Heon Han, Daejun Chang, Won Yang

Abstract:

NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.

Keywords: syngas, reburning, heavy oil, furnace

Procedia PDF Downloads 447
9003 Artificial Intelligence and Police

Authors: Mehrnoosh Abouzari

Abstract:

Artificial intelligence has covered all areas of human life and has helped or replaced many jobs. One of the areas of application of artificial intelligence in the police is to detect crime, identify the accused or victim and prove the crime. It will play an effective role in implementing preventive justice and creating security in the community, and improving judicial decisions. This will help improve the performance of the police, increase the accuracy of criminal investigations, and play an effective role in preventing crime and high-risk behaviors in society. This article presents and analyzes the capabilities and capacities of artificial intelligence in police and similar examples used worldwide to prove the necessity of using artificial intelligence in the police. The main topics discussed include the performance of artificial intelligence in crime detection and prediction, the risk capacity of criminals and the ability to apply arbitray institutions, and the introduction of artificial intelligence programs implemented worldwide in the field of criminal investigation for police.

Keywords: police, artificial intelligence, forecasting, prevention, software

Procedia PDF Downloads 213
9002 Influence of Well-Being and Quality of Work-Life on Quality of Care among Health Professionals in Southwest Nigeria

Authors: Adesola C. Odole, Michael O. Ogunlana, Nse A. Odunaiya, Olufemi O. Oyewole, Chidozie E. Mbada, Ogochukwu K. Onyeso, Ayomikun F. Ayodeji, Opeyemi M. Adegoke, Iyanuoluwa Odole, Comfort T. Sanuade, Moyosooreoluwa E. Odole, Oluwagbohunmi A. Awosoga

Abstract:

Purpose: The Nigerian healthcare industry is bedeviled with infrastructural decay, inadequate funding and staffing, and a dysfunctional healthcare system. This study investigated the influence of health professionals’ well-being and quality of work-life (QoWL) on the quality of care (QoC) of patients in Nigeria. Methods: The study was a multicentre cross-sectional survey conducted at four tertiary health institutions in southwest Nigeria. Participants’ demographic information, well-being, quality of work-life, and quality of care were obtained using four standardized questionnaires. Data were summarized using descriptive statistics of frequency (percentage) and mean (standard deviation). Inferential statistics included Chi-square, Pearson’s correlation, and independent samples t-test analyses. Results: Medical practitioners (n=609) and nurses (n=570) constituted 74.6% of all the health professionals, with physiotherapists, pharmacists, and medical laboratory scientists constituting 25.4%. The mean (SD) participants’ well-being = 71.65% (14.65), quality of life = 61.8% (21.31), quality of work-life = 65.73% (10.52) and quality of care = 70.14% (12.77). Participants’ quality of life had a significant negative correlation with the quality of care, while well-being and quality of work-life had a significant positive correlation with the quality of care. Conclusion: We concluded that health professionals’ well-being and quality of work-life are important factors that influence their productivity and, ultimately, the quality of care rendered to patients. The hospital management and policymakers should ensure improved work-related factors to improve the well-being of health professionals. This will enhance the quality of care given to patients and ultimately reduce brain drain and medical tourism.

Keywords: health professionals, quality of care, quality of life, quality of work-life, well-being

Procedia PDF Downloads 87
9001 Extension of D Blast Furnace Campaign Life at Tata Steel Ltd

Authors: Biswajit Seal, Dushyant Kumar, Shambhu Nath, A. B. Raju

Abstract:

Extension of blast furnace campaign life is highly desired for blast furnace operators mainly because of reduction of operating cost and to avoid capital expenditure cost. Tata Steel Ltd, Jamshedpur plant operates seven blast furnaces with combination of old and new technologies. The focus of Tata Steel Ltd is to push for increasing productivity with good quality product and increasing campaign life. This has been challenging for older furnaces because older furnaces are generally equipped with less automation, old design and old equipment. Good operational practices, appropriate remedial measures, and regular planned maintenance helps to achieve long campaign life of old furnaces. Good operating practices like stable and consistent productivity, control of burden distribution, remedial measures like stack gunning and shotcreting for protection of stack wall, enhanced cooling system, and intermediate stack repair helps to achieve long campaign life of old blast furnaces. This paper describes experiences with the current old equipment and design of Tata Steel’s D Blast Furnace for campaign life extension.

Keywords: blast furnace, burden distribution, campaign life, productivity

Procedia PDF Downloads 264
9000 Decoding Socio-Cultural Trends in Indian Urban Youth Using Ogilvy 3E Model

Authors: Falguni Vasavada, Pradyumna Malladi

Abstract:

The research focuses on studying the ecosystem of the youth using Ogilvy's 3E model, Ethnography and Thematic Analysis. It has been found that urban Indian youth today is an honest generation, hungry for success, living life by the moment, fiercely independent, are open about sex, sexuality and embrace individual differences. Technology and social media dominate their life. However, they are also phobic about commitments, often drifting along life and engage in unsubstantiated brave-talk.

Keywords: ethnography, youth, culture, track, buyer behavior

Procedia PDF Downloads 364
8999 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 86
8998 Determinants of Happiness and Its Relation towards Life Satisfaction among Adult Community of Kampung Jaya Bakti

Authors: Khairul Abid Awang

Abstract:

Happiness and life satisfaction are the vital components in assessing the well-being of the societies and their social progress. These components varies and changes within communities and across time. Thus, due to low level of happiness and life satisfaction, it might affect mental health status psychologically and generally disrupt the health pattern of the individual. Hence, this present study aims to identify the happiness determinants, assessing the happiness and life satisfaction level, as well as examine the relation between happiness among Kampung Jaya Bakti adult community. Quantitative and cross-sectional study with total of 100 observations of 18 years old and above was participated in this study. The study was done in a semi-rural village which is geocentric towards river that branched from South East Asia Sea. Several happiness and life satisfaction instruments was used, inclusive of Individual Determinants of Happiness Scale (IDoHS) that had been developed in this study, in order to identify the determinants of happiness in the area based on the listed determinants. The listed determinants in IDoHS are: i) Daily activities. ii) Adaptation. iii) Goals. iv) Life Events. v) Living condition. vi) Self-confidence. vii) Personality traits. viii) Religion. The results revealed that 98% of the respondents agreed that the listed determinants in IDoHS are statistically significant in determining the happiness. The happiness level revealed that 71 percent (%) of the respondents are ‘very happy’, followed by 26% (‘moderately happy’) and 3% (‘neutral’), while life satisfaction level revealed that 70% of the respondents are ‘very highly satisfied’, followed by 29% (‘highly satisfied’) and 1% (‘moderately satisfied’). Pearson Correlation (Pearson’s r) shows that; happiness determinants listed in IDoHS are affecting happiness level (Pearson’s r: .514, p < 0.01) and life satisfaction level (Pearson’s r: .504, p < 0.01) respectively, as well as happiness that are statistically significant in affecting life satisfaction (Pearson’s r: .653, p < 0.01; Pearson’s r; .546, p < 0.01). It is concluded that the listed determinants in IDoHS are the determinants that affecting happiness and it is also noted that happiness are affecting life satisfaction and vice versa.

Keywords: adult community, determinants, happiness, life satisfaction, subjective well-being

Procedia PDF Downloads 328
8997 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 541
8996 Happiness Determinants in MBA Student Life

Authors: Vivek Nair

Abstract:

The objective of this research is to find out happiness determinants in MBA student life. To figure out the factors influencing happiness in life is sorted by their personal profiles. This paper used survey method to collect data. The survey was mainly conducted among Management Students and is based on three hypothesis viz. Family relationship, Friendship and God as a source of happiness, and whether happiness is manageable and controllable. The statistics used for interpreting the results included the frequencies, percentages, and z test analysis. The findings revealed that family relationships and friendship have the same effect on individual happiness.

Keywords: happiness, family, MBA students, friends

Procedia PDF Downloads 308
8995 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 196
8994 Dueling Burnout: The Dual Role Nurse

Authors: Melissa Dorsey

Abstract:

Moral distress and compassion fatigue plague nurses in the Cardiothoracic Intensive Care Unit (CTICU) and cause an unnecessary level of turnover. Dueling Burnout describes an initiative that was implemented in the CTICU to reduce the level of burnout the nurses endure by encouraging dual roles with collaborating departments. Purpose: Critical care nurses are plagued by burnout, moral distress, and compassion fatigue due to the intensity of care provided. The purpose of the dual role program was to decrease these issues by providing relief from the intensity of the critical care environment while maintaining full-time employment. Relevance/Significance: Burnout, moral distress, and compassion fatigue are leading causes of Cardiothoracic Critical Care (CTCU) turnover. A contributing factor to burnout is the workload related to serving as a preceptor for a constant influx of new nurses (RN). As a result of these factors, the CTICU averages 17% nursing turnover/year. The cost, unit disruption, and, most importantly, distress of the clinical nurses required an innovative approach to create an improved work environment and experience. Strategies/Implementation/Methods: In May 2018, a dual role pilot was initiated for nurses. The dual role constitutes .6 full-time equivalent hours (FTE) worked in CTICU in combination with .3 FTE worked in the Emergency Department (ED). ED nurses who expressed an interest in cross-training to CTICU were also offered the dual role opportunity. The initial hypothesis was that full-time employees would benefit from a change in clinical setting leading to increased engagement and job satisfaction. The dual role also presents an opportunity for professional development through the expansion of clinical skills in another specialty. Success of the pilot led to extending the dual role to areas beyond the ED. Evaluation/Outcomes/Results: The number of dual role clinical nurses has grown to 22. From the dual role cohort, only one has transferred out of CTICU. This is a 5% turnover rate for this group of nurses as compared to the average turnover rate of 17%. A role satisfaction survey conducted with the dual role cohort found that because of working in a dual role, 76.5% decreased their intent to leave, 100% decreased their level of burnout, and 100% reported an increase in overall job satisfaction. Nurses reported the ability to develop skills that are transferable between departments. Respondents emphasized the appreciation gained from working in multiple environments; the dual role served to transform their care. Conclusions/Implications: Dual role is an effective strategy to retain experienced nurses, decrease burnout and turnover, improve collaboration, and provide flexibility to meet staffing needs. The dual role offers RNs an expansion of skills, relief from high acuity and orientee demands, while improving job satisfaction.

Keywords: nursing retention, burnout, pandemic, strategic staffing, leadership

Procedia PDF Downloads 187
8993 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System

Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami

Abstract:

There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.

Keywords: ARMAX, dynamic systems, MGT, prediction, rail degradation

Procedia PDF Downloads 253
8992 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 71
8991 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 474
8990 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 362
8989 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 76
8988 Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles

Authors: Un Hwa Choe, Jong Hyon Choe, Yong Jun Kim

Abstract:

The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation.

Keywords: CO₂-rich mineral water, ozone-micro bubble, shelf life, bottled mineral water, water treatment

Procedia PDF Downloads 88
8987 Emotional Intelligence and Its Relation to the Stressors of Life among King Saud University Students

Authors: Abdullah Ahmed Alzahrani

Abstract:

The aim of current study is to identify more life stressors, and the dimensions of emotional intelligence prevalent from the point of view of male and female students at King Saud University. Also, it comes to identify the relationship between emotional intelligence and the nature of life stressors faced by students at King Saud University. The Study tries to identify the differences in emotional intelligence and life stressors for students of King Saud University, which attributed to sex, age, grade point average, and the type of study scientific, literary The study sample consisted of 426 male and female students at King Saud University. The results shows that there are significant differences between emotional intelligence and life stressors faced by students at King Saud University. It turns out that there are differences in emotional intelligence between males and females in favor of females; While there are no differences in both the type of study and age. Finally, the study shows that there are differences of stressors in a lifetime for the age group between 19-25; While there are no differences in both type the type of study.

Keywords: emotional intelligence, life stressors, gender, students

Procedia PDF Downloads 494
8986 Communication and Devices: Face to Face Communication versus Communication with Mobile Technologies

Authors: Nuran Öze

Abstract:

With the rapid changes occurring in the last twenty five years, mobile phone technology has influenced every aspect of life. Technological developments within the Internet and mobile phone areas have not only changed communication practices; it has also changed the everyday life practices of individuals. This article has focused on understanding how people’s communication practices and everyday life practices have changed with the smartphone usage. The study was conducted by using in-depth interview method and the research was conducted on twenty Turkish Cypriots who live in Northern Cyprus. According to the research results, communicating via Internet has rapidly replaced face to face communication in recent years. However, results have changed according to generations. Younger generations can easily adapt themselves to technological changes because they are already gaining everyday life practices right now. However, the older generations practices are already present in their everyday life.

Keywords: face to face communication, internet, mobile technologies, north Cyprus

Procedia PDF Downloads 398
8985 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 226
8984 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 453
8983 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 449
8982 Influence of Spirituality on Health Outcomes and General Well-Being in Patients with End-Stage Renal Disease

Authors: Ali A Alshraifeen, Josie Evans, Kathleen Stoddart

Abstract:

End-stage renal disease (ESRD) introduces physical, psychological, social, emotional and spiritual challenges into patients’ lives. Spirituality has been found to contribute to improved health outcomes, mainly in the areas of quality of life (QOL) and well-being. No studies exist to explore the influence of spirituality on the health outcomes and general well-being in patients with end-stage renal disease receiving hemodialysis (HD) treatment in Scotland. This study was conducted to explore spirituality in the daily lives of among these patients and how it may influence their QOL and general well-being. The study employed a qualitative method. Data were collected using semi-structured interviews with a sample of 21 patients. A thematic approach using Framework Analysis informed the qualitative data analysis. Participants were recruited from 11 dialysis units across four Health Boards in Scotland. The participants were regular patients attending the dialysis units three times per week. Four main themes emerged from the qualitative interviews: ‘Emotional and Psychological Turmoil’, ‘Life is Restricted’, ‘Spirituality’ and ‘Other Coping Strategies’. The findings suggest that patients’ QOL might be affected because of the physical challenges such as unremitting fatigue, disease unpredictability and being tied down to a dialysis machine, or the emotional and psychological challenges imposed by the disease into their lives such as wholesale changes, dialysis as a forced choice and having a sense of indebtedness. The findings also revealed that spirituality was an important coping strategy for the majority of participants who took part in the qualitative component (n=16). Different meanings of spirituality were identified including connection with God or Supernatural Being, connection with the self, others and nature/environment. Spirituality encouraged participants to accept their disease and offered them a sense of protection, instilled hope in them and helped them to maintain a positive attitude to carry on with their daily lives, which may have had a positive influence on their health outcomes and general well-being. The findings also revealed that humor was another coping strategy that helped to diffuse stress and anxiety for some participants and encouraged them to carry on with their lives. The findings from this study provide a significant contribution to a very limited body of work. The study contributes to our understanding of spirituality and how people receiving dialysis treatment use it to manage their daily lives. Spirituality is of particular interest due to its connection with health outcomes in patients with chronic illnesses. The link between spirituality and many chronic illnesses has gained some recognition, yet the identification of its influence on the health outcomes and well-being in patients with ESRD is still evolving. There is a need to understand patients’ experiences and examine the factors that influence their QOL and well-being to ensure that the services available are adequately tailored to them. Hence, further research is required to obtain a better understanding of the influence of spirituality on the health outcomes and general well-being of patients with ESRD.

Keywords: end-stage renal disease, general well-being, quality of life, spirituality

Procedia PDF Downloads 229
8981 The Effect of Emotional Support towards Quality of Work Life on Balinese Working Women

Authors: I. Ketut Yoga Adityawira, Putu Ayu Novia Viorica, Komang Rahayu Indrawati

Abstract:

In addition to work and take care of the family, Balinese women also have a role to participate in social activities in Bali. So this will have an impact on the quality of work life of Balinese women. One way to reduce the impact of the fulfillment of the role of Balinese women namely through emotional support. The aim of this research is to find out the effect of emotional support towards the quality of work life on Balinese working women. Data were retrieved by quasi-experimental method with pretest-posttest design. Data were analyzed by Analysis of Variance (ANOVA) through SPSS 17.0 for Windows. The number of subjects in this research is 30 people with the criteria: Balinese Women, aged 27 to 55 years old, have a minimum of two years experience of work and has been married. The analysis showed that there is no effect of emotional support towards the quality of work life on Balinese working women, with information there is no significant of probability value p = 0.304 (p > 0.05).

Keywords: Balinese women, emotional support, quality of work life, working women

Procedia PDF Downloads 211
8980 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 187
8979 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: apartment housing, machine learning, multi-objective optimization, performance prediction

Procedia PDF Downloads 487
8978 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum

Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park

Abstract:

When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.

Keywords: floating floor, heavy-weight impact, prediction, vibration

Procedia PDF Downloads 373
8977 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 66
8976 Protecting Right to Life and Combating Terrorism through the Instrument of Law in Nigeria

Authors: Oyekan Kolawole Jamiu

Abstract:

The right to life is a moral principle based on the belief that a human being has the right to life and, in particular, should not be unjustly killed by another human being. However, the most worrisome security challenge in Nigeria which has cut short the lives of innocent Nigerians is the activities of the dreaded terrorist group known as Boko Haram (which means Western Education is a sin). Between 2004 till date, over 15000 people have been gruesomely murdered by this terrorist group. However, despite the facts that suspected terrorists are arrested and paraded almost on a daily basis, cases of terrorism in our courts in Nigeria today have not been expeditiously dealt with by the judiciary. This paper examines the concept of right to life. The right to life is an inherent right for each and every person. From his or her birth; the individual is considered a living being that must be protected. The right to life connotes also right to live and grow in a healthy environment where there is appropriate health care, qualitative education and adequate security of lives and property. The paper also examines the fight against terrorism and the duty of the government to protect right to life of every individual even in the midst of the fight against terrorism. The paper further reviews the Terrorism Act 2011(as amended) and the clogs in the wheel of prosecution of suspected terrorists. The paper concludes that since terrorism is a new security challenge, to prevent conflict of interest, only one security agency should be trained and saddled with the responsibility of prosecuting suspected terrorist, Law should be enacted to compel intelligent gathering and sharing of information among security agencies and in addition, a special court should be established to deal expeditiously with cases of terrorism in Nigeria.

Keywords: terrorism, intelligent gathering, right to life, prosecution

Procedia PDF Downloads 353