Search results for: plasma chemical etching
4512 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins
Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska
Abstract:
The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides
Procedia PDF Downloads 1304511 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir
Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder
Abstract:
22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality
Procedia PDF Downloads 2914510 Corresponding Effect of Mycorhizal fungi and Pistachio on Absorption of Nutrition and Resistance on Salinity in Pistacia vera, L.
Authors: Hamid Mohammadi, S. H. Eftekhar Afzali
Abstract:
The irregular usage of chemical fertilizer cause different types of water and soil pollution and problems in health of human in past decades and organic fertilizer has been considered more and more. Mycorrhizal fungi have symbiosis with plant families and significantly effect on plant growth. Proper management of these symbiosis causes to reduce the usage of chemical fertilizers and absorb nutrition especially phosphor. Pistacia vera is endemic in Iran and is one of the most important products for this country. Considering special circumstances of pistachio orchards according to increasing salinity of water and soil and mismanagement of fertilizer reveals the necessity of the usage of Mycorrhizal fungi in these orchards.Keywords: pistachio, mycorhiza, nutrition, salinity
Procedia PDF Downloads 5014509 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins
Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа
Abstract:
Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins
Procedia PDF Downloads 1984508 Polyampholytic Resins: Advances in Ion Exchanging Properties
Authors: N. P. G. N. Chandrasekara, R. M. Pashley
Abstract:
Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.Keywords: capacity, ion exchange, polyampholytic resin, regeneration
Procedia PDF Downloads 3764507 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor
Authors: Ekaterina Artiukhina, Panagiotis Grammelis
Abstract:
Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.Keywords: torrefaction, biomass pellets, model, heat, mass transfer
Procedia PDF Downloads 4804506 Investigation of the Effect of Nickel Electrodes as a Stainless Steel Buffer Layer on the Shielded Metal Arc Welding
Authors: Meisam Akbari, Seyed Hossein Elahi, Mohammad Mashadgarmeh
Abstract:
In this study, the effect of nickel-electrode as a stainless steel buffer layer is considered. Then, the effect of dilution of the last layer of welding on two samples of steel plate A516 Gr70 (C-Mn-Si) with SMAW welding process was investigated. Then, in a sample, the ENI-cl nickel electrode was welded as the buffer layer and the E316L-16 electrode as the last layer of welding and another sample with an E316L-16 electrode in two layers. The chemical composition of the latter layer was determined by spectrophotometry method. The results indicate that the chemical composition of the latter layer is different and the lowest dilution rate is obtained using the nickel electrode.Keywords: degree of dilution, C-Mn-Si, spectrometry, nickel electrode, stainless steel
Procedia PDF Downloads 2204505 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 2344504 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method
Authors: A. K. Paul, Vinod Kumar
Abstract:
Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties
Procedia PDF Downloads 1274503 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters
Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita
Abstract:
In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water
Procedia PDF Downloads 1384502 Behavioral Responses of Coccinella septempunctata and Diaeretiella rapae toward Semiochemicals and Plant Extract
Authors: Muhammad Tariq, Bushra Siddique, Muhammad Naeem, Asim Gulzar
Abstract:
The chemical ecology of natural enemies can play a pivotal role in any Integrated Pest Management (IPM) program. Different chemical cues help to correspond in the diversity of associations between prey and host plant species. Coccinellaseptempunctata and Diaeretiellarapae have the abilities to explore several chemical cues released by plants under herbivore attack that may enhance their efficiency of foraging. In this study, the behavioral responses of Coccinellaseptempunctata and Diaeretiellarapae were examined under the application of two semiochemicals and a plant extract and their combinations using four-arm olfactometer. The bioassay was consists of a pairwise treatment comparison. Data pertaining to the preference of C. septempunctata and D. rapae after treatment application were recorded and analyzed statistically. The mean number of entries and time spent of Coccinellaseptempunctata and D. rapaewere greater in arms treated with E-β-Farnesene. However, the efficacy of E-β-Farnesene was enhanced when combined with β-pinene. Thus, the mean number of entries and time spent of C. septempunctata and D. rapaewere highest in arms treated with the combination of E-β-Farnesene x β-pinene as compared with other treatments. The current work has demonstrated that the insect-derived semiochemicals may enhance the efficacy of natural enemies when applied in combination.Keywords: olfectometer, parasitoid, predator, preference
Procedia PDF Downloads 1454501 Mostar Type Indices and QSPR Analysis of Octane Isomers
Authors: B. Roopa Sri, Y Lakshmi Naidu
Abstract:
Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties.Keywords: chemical graph theory, mostar type indices, octane isomers, qspr analysis, topological index
Procedia PDF Downloads 1304500 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures
Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo
Abstract:
The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.Keywords: biosilica, characterization, corn cob, sustainable cementitious materials
Procedia PDF Downloads 2624499 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles
Authors: Ahmed El-Fiqi, Hae-Won Kim
Abstract:
Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release
Procedia PDF Downloads 1074498 Oral Versus Iontophoresis Nonsteroidal Anti-Inflammatory Drugs in Tennis Elbow
Authors: Moustafa Ali Elwan, Ibrahim Salem Abdelrafa, Ashraf Moharm
Abstract:
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed oral and topical drugs worldwide. Moreover, NSAIDs are responsible for most of all adverse drug reactions. For several decades, there are numerous attempts to use the cutaneous layers as a gate into the body for the local delivery of the therapeutic agent. Transdermal drug delivery is a validated technology contributing significantly to global pharmaceutical care. Transdermal Drug Delivery systems can be improved by using therapeutic agents. Moreover, Transdermal Drug Delivery systems can be improved by using chemical enhancers like ultrasound or iontophoresis. Iontophoresis provides a mechanism to enhance the penetration of hydrophilic and charged molecules across the skin. Objective: to compare the drug administration by ‘iontophoresis’ versus the oral rule. Methods: This study was conducted at the Faculty of Physical Therapy, Modern University for technology and information, Cairo, Egypt, on 20 participants (8 female & 12 male) who complained of tennis elbow. Their mean age was (25.45 ± 3.98) years, and all participants were assessed in many aspects: Pain threshold was assessed by algometer. Range of motion was assessed by electro goniometer, and isometric strength was assessed by a portable hand-held dynamometer. Then Participants were randomly assigned into two groups: group A was treated with oral NSAID (diclofenac) while group B was treated via administration of NSAIDs (diclofenac) via an iontophoresis device. All the participants were subjected to blood samples analysis in both pre-administration of the drug and post-administration of the drug for 24 hours (sample/every 6 hours). Results: The results demonstrated that there was a significant improvement in group b, “iontophoresis NSAIDs group,” more than in group B,” oral NSAIDs group,” in all measurements ‘ pain threshold, strength, and range of motion. Also, the iontophoresis method shows higher maximum plasma concentrations (Cmax) and concentration-time curves than the oral method.Keywords: diclofenac, iontophoresis, NSAIDs, oral, tennis elbow
Procedia PDF Downloads 1154497 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode
Authors: Haohua Zong, Marios Kotsonis
Abstract:
Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.Keywords: plasma, synthetic jet, actuator, frequency effect
Procedia PDF Downloads 2524496 Virucidal, Bactericidal and Fungicidal Efficiency of Dry Microfine Steam on Innate Surfaces
Authors: C. Recchia, M. Bourel, B. Recchia
Abstract:
Microorganisms (viruses, bacteria, fungi) are responsible for most communicable diseases, threatening human health. For domestic use, chemical agents are often criticized because of their potential dangerousness, and natural solutions are needed. Application of the “dry microfine steam” (DMS) technology was tested on a selection of common pathogens (SARS-CoV-2, enterovirus EV-71, human coronavirus 229E, E. coli, S. aureus, C. albicans), on different innate surfaces, for 5 to 10 seconds. Quantification of the remaining pathogens was performed, and the reduction rates ranged from 99.8% (S. aureus on plastic) to over 99.999%. DMS showed high efficacy in the elimination of common microorganisms and could be seen as a natural alternative to chemical agents to improve domestic hygiene.Keywords: steam, SARS-CoV-2, bactericidal, virucidal, fungicidal, sterilization
Procedia PDF Downloads 1634495 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects
Authors: Okuyade Ighoroje Wilson Ata
Abstract:
Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel
Procedia PDF Downloads 774494 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning
Authors: Chia Wei Lim, Ning Yan
Abstract:
The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning
Procedia PDF Downloads 934493 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes
Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger
Abstract:
Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene
Procedia PDF Downloads 4804492 Fifth Grade Student Skills of Reading Illustrated Drawings in Physical and Chemical Changes Included in Science Textbook
Authors: Sozan H. Omar, Lina L. Al-Rewaili
Abstract:
The current study aimed to measure the fifth Grade student skills of reading illustrates in physical and chemical chapter included in science textbook, as well as identity the tasks the dispersants related to designing these illustrates which obstruct the students to read them properly. The researcher applied the test instrument of open discuss questions to measure the skill of: recognizing, description, interpretation and assessment for a sample of this research consisted of (269) students who read three illustrates, and conduct an interview with sample of them (27) students to recognize the dispersants related to designing of these illustrates. The study results showed that there are poor levels in illustrated drawing reading skills: description, interpretation, and assessment. The most important dispersants which obstruct the students to read theses illustrates properly representing: Art impacts of these illustrates, there are some elements which don’t serve these illustrates. In the light of the above results, the researcher provided some recommendations such as training the students on using the images and illustrates properly in science textbooks, as well as create simple designs of illustrates and they should be free of crowded elements and impacts which don’t serve the illustrates.Keywords: reading illustrated drawings skills, fifth grade science, physical and chemical changes
Procedia PDF Downloads 3744491 Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield
Authors: Yasir Arafat, Asma Shah, Hua Shao
Abstract:
Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement.Keywords: intercropping, microbial community, LMWOAs, PGPR, soil chemical environment
Procedia PDF Downloads 844490 Comparative Study of Impedance Parameters for 42CrMo4 Steel Nitrided and Exposed at Electrochemical Corrosion
Authors: M. H. Belahssen, S. Benramache
Abstract:
This paper presents corrosion behavior of alloy 42CrMo4 steel nitrided by plasma. Different samples nitrided were tested. The corrosion behavior was evaluated by electrochemical impedance spectroscopy and the tests were carried out in acid chloride solution 1M. The best corrosion protection was observed for nitrided samples. The aim of this work is to compare equivalents circuits corresponding to Nyquist curves simulated and experimental and select who gives best results of impedance parameters with lowest error.Keywords: pasma nitriding, steel, alloy 42CrMo4, elecrochemistry, corrosion behavior
Procedia PDF Downloads 3714489 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.Keywords: temple painting, painting material, conservation, FT-IR
Procedia PDF Downloads 1884488 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions
Authors: Nisha Dhariwal, Anupama Sharma
Abstract:
The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization
Procedia PDF Downloads 3014487 Structure Elucidation of Isolated Active Compounds from Nigella sativa and Calotropis procera and Their Efficacy for Treatment of Asthma
Authors: Intisar S. A. Elzein
Abstract:
In Saudi Arabia parts of Nigella sativa, and Calotropis procera are commonly used in folk medicine for the treatment of asthma, bronchitis, cough, eczema and other diseases. The purpose of the study is to identify chemical constituents of Nigella sativa seed and Calotropis procera leave isolated by the bioassay guided fractionation process and find out their relevance to the alleged efficacy of the plant in treating asthma. The medicinal properties of both plants for asthma treatment referred to the rich abundance of thymoquinone and phytol compounds isolated from the essential oil of their seed and leave extracts, which they can form a part of molecules of vitamin K.Keywords: asthma, Calotropis procera, chemical constituents, Nigella sativa, vitamin K
Procedia PDF Downloads 2514486 Chemical Constituents of Matthiola Longipetala Extracts: In Vivo Antioxidant and Antidiabetic Effects in Alloxan Induced Diabetes Rats
Authors: Mona Marzouk, Nesrine Hegazi, Aliaa Ragheb, Mona El Shabrawy, Salwa Kawashty
Abstract:
The whole plant of Matthiola longipetala (Brassicaceae) was extracted by 70% methanol to give the total aqueous methanol extract (AME), which was defatted by hexane yielded hexane extract (HE) and defatted AME (DAME). HE was analyzed through GC/MS assay and revealed the detection of 28 non-polar compounds. In addition, the chemical investigation of DAME led to the isolation and purification of twelve flavonoids and three chlorogenic acids. Their structures were interpreted through chemical (complete and partial acid hydrolysis) and spectroscopic analysis (MS, UV, 1D and 2D NMR). Among them, nine compounds have been isolated for the first time from M. longipetala. Moreover, LC-ESI-MS analysis of DAME was achieved to detect additional 46 metabolites, including phospholipids, organic acids, phenolic acids and flavonoids. The biological activity of AME, HE and DAME against alloxan inducing oxidative stress and diabetes in male rats was investigated. Diabetes was induced using a single dose of Alloxan (150 mg/kg b.wt.). HE and DAME significantly increased serum GSH content in rats (37.3±0.7 and 35.9±0.6 mmol/l) compared to diabetic rats (21.8±0.3) and vitamin E (36.2±1.1) at P<0.01. Also, HE, DAME and AME revealed a significant acute anti-hyperglycemic effect potentiated after four weeks of treatment with blood glucose levels of 96.2±5.4, 98.7±6.1 and 98.9±8.6 mg/dl, respectively, compared to diabetic rats (263.4±7.8) and metaformin group (81.9±2.4) at P<0.01.Keywords: Brassicaceae, Flavonoid, LCMS/MS, Matthiola
Procedia PDF Downloads 1834485 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia
Authors: Samira Melki, Moncef Gueddari
Abstract:
In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia
Procedia PDF Downloads 2024484 Opto-Electronic Properties of Novel Structures: Sila-Fulleranes
Authors: Farah Marsusi, Mohammad Qasemnazhand
Abstract:
Density-functional theory (DFT) was applied to investigate the geometry and electronic properties H-terminated Si-fullerene (Si-fullerane). Natural bond orbital (NBO) analysis confirms sp3 hybridization nature of Si-Si bonds in Si-fulleranes. Quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 to 1.7 nm. In contrast, the geometry and symmetry of the cage have significant influence on BG. In contrast to their carbon analogues, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface.Keywords: density functional theory, sila-fullerens, NBO analysis, opto-electronic properties
Procedia PDF Downloads 2984483 Temperature Measurements of Corona Discharge in the SF6-N2 Gas Mixture
Authors: A. Lemzadmi
Abstract:
Rotational and vibrational temperatures of the SF6-N2 gas mixture are spectroscopically measured over a pressure range of 2-14 bars. The spectra obtained of the light emission of the corona discharge were recorded with different values of pressure, voltage and current together with the variation of the position of the tip electrode. The emission of N2 is very dominant for different gas concentration and the second positive system 2S+ is the most important. The convolution method is used for the determination of the temperature. The Rotational temperature measurements of the plasma reveal gas temperatures in the range of 450-650°K and vibrational temperatures in the range of 1800-2200°K.Keywords: rotational temperatures, corona discharges, SF6-N2 gas mixture, vibrational temperatures
Procedia PDF Downloads 463