Search results for: network subgraphs
3836 On Performance of Cache Replacement Schemes in NDN-IoT
Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi
Abstract:
The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.Keywords: NDN-IoT, cache replacement, performance, ndnSIM
Procedia PDF Downloads 3653835 Net Neutrality and Asymmetric Platform Competition
Authors: Romain Lestage, Marc Bourreau
Abstract:
In this paper we analyze the interplay between access to the last-mile network and net neutrality in the market for Internet access. We consider two Internet Service Providers (ISPs), which act as platforms between Internet users and Content Providers (CPs). One of the ISPs is vertically integrated and provides access to its last-mile network to the other (non-integrated) ISP. We show that a lower access price increases the integrated ISP's incentives to charge CPs positive termination fees (i.e., to deviate from net neutrality), and decreases the non-integrated ISP's incentives to charge positive termination fees.Keywords: net neutrality, access regulation, internet access, two-sided markets
Procedia PDF Downloads 3763834 Asymmetric Linkages Between Global Sustainable Index (Green Bond) and Cryptocurrency Markets with Portfolio Implications
Authors: Faheem Ur Rehman, Muhammad Khalil Khan, Miao Qing
Abstract:
This study investigated the asymmetric links and portfolio strategies between green bonds and the markets of three different cryptocurrencies, i.e., green, Islamic, and conventional, using data from January 1, 2018, to April 8, 2022, and employing asymmetric TVP-VAR model to quantify risk spillovers in the network analysis. In addition, we use the minimum variance, minimum correlation, and minimum connectedness methodologies to assess the portfolio implications. The results of the asymmetric dynamic connectedness index (TCI) model show that by adopting cryptocurrencies for digital finance, risk spillovers are found to be reduced. The findings of net directional connectedness demonstrate that during the study period, green bonds consistently get return spillovers from all other network variables. Positive return spillovers are bigger in magnitude than negative ones. These results imply that the influence of the green bond market on the cryptocurrency markets is decreasing. Positive return spillovers generate higher connectedness values for (HG, BNB, and TRX) coins and persistent net recipients in the specific network. On the other hand, Cardano and ADA coins are persistent net transmitters in the system. XLM and MIOTA's responsibilities shift over time, and there is evidence of asymmetry when both positive and negative returns are considered. According to the pairwise portfolio weights, BNB vs. BTC has the largest portfolio weights in the system, followed by BNB vs. Ethereum, suggesting the best investment strategies in the network.Keywords: asymmetric TVP-VAR, global sustainable index, cryptocurrency, portfolios
Procedia PDF Downloads 783833 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays
Authors: Swati Tyagi, Syed Abbas
Abstract:
Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability
Procedia PDF Downloads 3643832 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 2543831 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network
Authors: Manoj Kumar
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.Keywords: AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 5183830 Computational Team Dynamics and Interaction Patterns in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams
Procedia PDF Downloads 703829 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 1763828 Role of ICT and Wage Inequality in Organization
Authors: Shoji Katagiri
Abstract:
This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.Keywords: endogenous economic growth, ICT, inequality, capital accumulation
Procedia PDF Downloads 2603827 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4423826 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: artificial neural networks, biodiesel, iodine value, prediction
Procedia PDF Downloads 6063825 Design of Circular Patch Antenna in Terahertz Band for Medical Applications
Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila
Abstract:
The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring
Procedia PDF Downloads 3073824 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 3603823 Cache Analysis and Software Optimizations for Faster on-Chip Network Simulations
Authors: Khyamling Parane, B. M. Prabhu Prasad, Basavaraj Talawar
Abstract:
Fast simulations are critical in reducing time to market in CMPs and SoCs. Several simulators have been used to evaluate the performance and power consumed by Network-on-Chips. Researchers and designers rely upon these simulators for design space exploration of NoC architectures. Our experiments show that simulating large NoC topologies take hours to several days for completion. To speed up the simulations, it is necessary to investigate and optimize the hotspots in simulator source code. Among several simulators available, we choose Booksim2.0, as it is being extensively used in the NoC community. In this paper, we analyze the cache and memory system behaviour of Booksim2.0 to accurately monitor input dependent performance bottlenecks. Our measurements show that cache and memory usage patterns vary widely based on the input parameters given to Booksim2.0. Based on these measurements, the cache configuration having least misses has been identified. To further reduce the cache misses, we use software optimization techniques such as removal of unused functions, loop interchanging and replacing post-increment operator with pre-increment operator for non-primitive data types. The cache misses were reduced by 18.52%, 5.34% and 3.91% by employing above technology respectively. We also employ thread parallelization and vectorization to improve the overall performance of Booksim2.0. The OpenMP programming model and SIMD are used for parallelizing and vectorizing the more time-consuming portions of Booksim2.0. Speedups of 2.93x and 3.97x were observed for the Mesh topology with 30 × 30 network size by employing thread parallelization and vectorization respectively.Keywords: cache behaviour, network-on-chip, performance profiling, vectorization
Procedia PDF Downloads 1973822 Study on the Transition to Pacemaker of Two Coupled Neurons
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity
Procedia PDF Downloads 2843821 Semirings of Graphs: An Approach Towards the Algebra of Graphs
Authors: Gete Umbrey, Saifur Rahman
Abstract:
Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.Keywords: graphs, join and union of graphs, semiring, weighted graphs
Procedia PDF Downloads 1483820 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain
Procedia PDF Downloads 2913819 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 2123818 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 1553817 Managerial Advice-Seeking and Supply Chain Resilience: A Social Capital Perspective
Authors: Ethan Nikookar, Yalda Boroushaki, Larissa Statsenko, Jorge Ochoa Paniagua
Abstract:
Given the serious impact that supply chain disruptions can have on a firm's bottom-line performance, both industry and academia are interested in supply chain resilience, a capability of the supply chain that enables it to cope with disruptions. To date, much of the research has focused on the antecedents of supply chain resilience. This line of research has suggested various firm-level capabilities that are associated with greater supply chain resilience. A consensus has emerged among researchers that supply chain flexibility holds the greatest potential to create resilience. Supply chain flexibility achieves resilience by creating readiness to respond to disruptions with little cost and time by means of reconfiguring supply chain resources to mitigate the impacts of the disruption. Decisions related to supply chain disruptions are made by supply chain managers; however, the role played by supply chain managers' reference networks has been overlooked in the supply chain resilience literature. This study aims to understand the impact of supply chain managers on their firms' supply chain resilience. Drawing on social capital theory and social network theory, this paper proposes a conceptual model to explore the role of supply chain managers in developing the resilience of supply chains. Our model posits that higher level of supply chain managers' embeddedness in their reference network is associated with increased resilience of their firms' supply chain. A reference network includes individuals from whom supply chain managers seek advice on supply chain related matters. The relationships between supply chain managers' embeddedness in reference network and supply chain resilience are mediated by supply chain flexibility.Keywords: supply chain resilience, embeddedness, reference networks, social capitals
Procedia PDF Downloads 2283816 A New Internal Architecture Based On Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine data set, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: artificial neural network, bees algorithm, feature selection, Holon
Procedia PDF Downloads 4573815 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State
Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara
Abstract:
In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.Keywords: drainage network, spatial, digitization, relational database, waste
Procedia PDF Downloads 3343814 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5023813 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth
Authors: Neil Erick Q. Madariaga, Noel B. Linsangan
Abstract:
Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell
Procedia PDF Downloads 3243812 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1293811 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 1423810 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 863809 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review
Authors: Melake Kuflom
Abstract:
European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources
Procedia PDF Downloads 2063808 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances
Authors: Muhammad Abdullah Arafat, Nahrin Nowrose
Abstract:
Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.Keywords: coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer
Procedia PDF Downloads 1953807 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 517