Search results for: long term
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7526

Search results for: long term

6626 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 141
6625 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 46
6624 An Investigation into the Correlation between Music Preferences and Emotional Regulation in Military Cadets

Authors: Chiu-Pin Wei

Abstract:

This research aims to explore the impact of music preferences on the emotional well-being of military academy students, recognizing the potential long-term implications for their high-stress careers post-graduation. Given the significance of positive emotion regulation in military personnel, this study focuses on understanding the types of music preferred by military cadets and analyzing how these preferences correlate with their emotional states. The study employs a quantitative approach, utilizing the Music Category Scale and Mood Scale to collect data. Statistical tools, such as Statistical Product and Service Solutions (SPSS), are employed for inferential analysis, including t-tests for emotional responses to instrumental and vocal music, one-way variance analysis for different demographic factors (grades, genders, and music listening frequencies), and Pearson's correlation to examine the relationship between music preferences and moods of military students.

Keywords: music preference, emotional regulation, military academic students, SPASS

Procedia PDF Downloads 67
6623 The Mediatory Role of Innovation in the Link between Social and Financial Performance

Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun

Abstract:

In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.

Keywords: ESG, financial performance, innovation, social performance, structural equation modeling

Procedia PDF Downloads 101
6622 Analysis of Tools for Revitalization and Rehabilitation of Brownfields

Authors: Jiří Kugl

Abstract:

Typology and specific opportunities of brownfield revitalization are already largely described. Challenges and opportunities that brownfields represent have been adequately studied and presented, as well as specific ways in which these areas can be used or how they are used abroad. In other words, the questions why (revitalize brownfields) and what (we should do with them) are satisfactorily answered, but the question how (we can work with them) is not. This work will focus on answering this question, which will deal with tools that enable the revitalization and rehabilitation projects in the area. Tools can be divided, for example in terms of spatial planning and urban design, from an environmental perspective, from the perspective of cultural heritage protection and from the perspective of investment opportunities. The result is that the issue of brownfields is handled by numerous institutions and instruments. The aim of this paper is to identify, classify and analyze these instruments. Paper will study instruments from other countries with long-term experience with this issue (eg. France, Great Britain, USA, Germany, Denmark, Czech Republic) and analyse their contribution and the feasibility of their implementation in other countries.

Keywords: brownfields, revitalization, rehabilitation, tools, urban planning

Procedia PDF Downloads 238
6621 Slug Initiation Evaluation in Long Horizontal Channels Experimentally

Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi

Abstract:

In this paper, the effects of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cmx10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.

Keywords: liquid holdup, long horizontal channel, slug initiation position, superficial inlet velocity

Procedia PDF Downloads 263
6620 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 145
6619 The Challenge of Navigating Long Tunnels

Authors: Ali Mohammadi

Abstract:

One of the concerns that employers and contractors have in creating long tunnels is that when the excavation is completed, the tunnel will be exited in the correct position according to designed, the deviation of the tunnel from its path can have many costs for the employer and the contractor, lack of correct calculations by the surveying engineer or the employer and contractors lack of importance to the surveying team in guiding the tunnel can cause the tunnel to deviate from its path and this deviation becomes a disaster. But employers are able to make the right decisions so that the tunnel is guided with the highest precision if they consider some points. We are investigating two tunnels with lengths of 12 and 18 kilometers that were dug by Tunnel boring machine machines to transfer water, how the contractor’s decision to control the 12 kilometer tunnel caused the most accuracy of one centimeter to the next part of the tunnel will be connected. We will also investigate the reasons for the deviation of axis in the 18 km tunnel about 20 meters. Also we review the calculations of surveyor engineers in both tunnels and what challenges there will be in the calculations and teach how to solve these challenges. Surveying calculations are the most important part in controlling long tunnels.

Keywords: UTM, localization, scale factor, traverse

Procedia PDF Downloads 73
6618 The Impact of Climate Change on Cropland Ecosystem in Tibet Plateau

Authors: Weishou Shen, Chunyan Yang, Zhongliang Li

Abstract:

The crop climate productivity and the distribution of cropland reflect long-term adaption of agriculture to climate. In order to fully understand the impact of climate change on cropland ecosystem in Tibet, the spatiotemporal changes of crop climate productivity and cropland distribution were analyzed with the help of GIS and RS software. Results indicated that the climate change to the direction of wet and warm in Tibet in the recent 30 years, with a rate of 0.79℃/10 yr and 23.28 mm/10yr respectively. Correspondingly, the climate productivity increased gradually, with a rate of 346.3kg/(hm2•10a), of which, the fastest-growing rate of the crop climate productivity is in Southern Tibet Mountain- plain-valley. During the study period, the total cropland area increased from 32.54 million ha to 37.13 million ha, and cropland has expanded to higher altitude area and northward. Overall, increased cropland area and crop climate productivity due to climate change plays a positive role for agriculture in Tibet.

Keywords: climate change, productivity, cropland area, Tibet plateau

Procedia PDF Downloads 376
6617 Eco-Infrastructures: A Multidimensional System Approach for Urban Ecology

Authors: T. A. Mona M. Salem, Ali F. Bakr

Abstract:

Given the potential devastation associated with future climate change related disasters, it is vital to change the way we build and manage our cities, through new strategies to reconfigure them and their infrastructures in ways that help secure their reproduction. This leads to a kaleidoscopic view of the city that recognizes the interrelationships of energy, water, transportation, and solid waste. These interrelationships apply across sectors and with respect to the built form of the city. The paper aims at a long-term climate resilience of cities and their critical infrastructures, and sets out an argument for including an eco-infrastructure-based approach in strategies to address climate change. As these ecosystems have a critical role to play in building resilience and reducing vulnerabilities in cities, communities and economies at risk, the enhanced protection and management of ecosystems, biological resources and habitats can mitigate impacts and contribute to solutions as nations and cities strive to adapt to climate change.

Keywords: ecology, ecosystem, infrastructure, climate change, urban

Procedia PDF Downloads 304
6616 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran

Authors: Safieh Javadinejad

Abstract:

In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.

Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling

Procedia PDF Downloads 291
6615 Co-Evolution of Urban Lake System and Rapid Urbanization: Case of Raipur, Chhattisgarh

Authors: Kamal Agrawal, Ved Prakash Nayak, Akshay Patil

Abstract:

Raipur is known as a city of water bodies. The city had around 200 man-made and natural lakes of varying sizes. These structures were constructed to collect rainwater and control flooding in the city. Due to the transition from community participation to state government, as well as rapid urbanisation, Raipur now has only about 80 lakes left. Rapid and unplanned growth has resulted in pollution, encroachment, and eutrophication of the city's lakes. The state government keeps these lakes in good condition by cleaning them and proposing lakefront developments. However, maintaining individual lakes is insufficient because urban lakes are not distinct entities. It is a system comprised of the lake, shore, catchment, and other components. While Urban lake system (ULS) is a combination of multiple such lake systems interacting in a complex urban setting. Thus, the project aims to propose a co-evolution model for urban lake systems (ULS) and rapid urbanization in Raipur. The goals are to comprehend the ULS and to identify elements and dimensions of urbanization that influence the ULS. Evaluate the impact of rapid urbanization on the ULS & vice versa in the study area. Determine how to maximize the positive impact while minimizing the negative impact identified in the study area. Propose short-, medium-, and long-term planning interventions to support the ULS's co-evolution with rapid urbanization. A complexity approach is used to investigate the ULS. It is a technique for understanding large, complex systems. A complex system is one with many interconnected and interdependent elements and dimensions. Thus, elements of ULS and rapid urbanization are identified through a literature study to evaluate statements of their impacts (Beneficial/ Adverse) on one another. Rapid urbanization has been identified as having elements such as demography, urban legislation, informal settlement, urban infrastructure, and tourism. Similarly, the catchment area of the lake, the lake's water quality, the water spread area, and lakefront developments are all being impacted by rapid urbanisation. These nine elements serve as parameters for the subsequent analysis. Elements are limited to physical parameters only. The city has designated a study area based on the definition provided by the National Plan for the Conservation of Aquatic Ecosystems. Three lakes are discovered within a one-kilometer radius, establishing a tiny urban lake system. Because the condition of a lake is directly related to the condition of its catchment area, the catchment area of these three lakes is delineated as the study area. Data is collected to identify impact statements, and the interdependence diagram generated between the parameters yields results in terms of interlinking between each parameter and their impact on the system as a whole. The planning interventions proposed for the ULS and rapid urbanisation co-evolution model include spatial proposals as well as policy recommendations for the short, medium, and long term. This study's next step will be to determine how to implement the proposed interventions based on the availability of resources, funds, and governance patterns.

Keywords: urban lake system, co-evolution, rapid urbanization, complex system

Procedia PDF Downloads 71
6614 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 93
6613 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: atmospheric corrosion, EIS, low alloy, rust

Procedia PDF Downloads 447
6612 Readiness of Military Professionals for Challenging Situations

Authors: Petra Hurbišová, Monika Davidová

Abstract:

The article deals with the readiness of military professionals for challenging situations. It discusses higher requirements on the psychical endurance of military professionals arising from the specific nature of the military occupation, which is typical for being very difficult to maintain regularity, which is in accordance with the hygiene of work alternated by relaxation. The soldier must be able to serve in the long term and constantly intense performance that goes beyond human tolerance to stress situations. A challenging situation is always associated with overcoming difficulties, obstacles and complicated circumstances or using unusual methods, ways and means to achieve the desired (expected) objectives, performing a given task or satisfying an important need. This paper describes the categories of challenging situations, their classification and characteristics. Attention is also paid to the formation of personality in challenging situations, coping with stress in challenging situations, Phases of solutions of stressful situations, resistance to challenging life situations and its factors. Finally, the article is focused on increasing the readiness of military professionals for challenging situations.

Keywords: coping, challenging situations, stress, stressful situations, military professionals, resilience

Procedia PDF Downloads 315
6611 The Term of Intellectual Property and Artificial Intelligence

Authors: Yusuf Turan

Abstract:

Definition of Intellectual Property Rights according to the World Intellectual Property Organization: " Intellectual property (IP) refers to creations of the mind, such as inventions; literary and artistic works; designs; and symbols, names and images used in commerce." It states as follows. There are 2 important points in the definition; we can say that it is the result of intellectual activities that occur by one or more than one PERSON and as INNOVATION. When the history and development of the relevant definitions are briefly examined, it is realized that these two points have remained constant and Intellectual Property law and rights have been shaped around these two points. With the expansion of the scope of the term Intellectual Property as a result of the development of technology, especially in the field of artificial intelligence, questions such as "Can "Artificial Intelligence" be an inventor?" need to be resolved within the expanding scope. In the past years, it was ruled that the artificial intelligence named DABUS seen in the USA did not meet the definition of "individual" and therefore would be an inventor/inventor. With the developing technology, it is obvious that we will encounter such situations much more frequently in the field of intellectual property. While expanding the scope, we should definitely determine the boundaries of how we should decide who performs the mental activity or creativity that we call indispensable on the inventor/inventor according to these problems. As a result of all these problems and innovative situations, it is clearly realized that not only Intellectual Property Law and Rights but also their definitions need to be updated and improved. Ignoring the situations that are outside the scope of the current Intellectual Property Term is not enough to solve the problem and brings uncertainty. The fact that laws and definitions that have been operating on the same theories for years exclude today's innovative technologies from the scope contradicts intellectual property, which is expressed as a new and innovative field. Today, as a result of the innovative creation of poetry, painting, animation, music and even theater works with artificial intelligence, it must be recognized that the definition of Intellectual Property must be revised.

Keywords: artificial intelligence, innovation, the term of intellectual property, right

Procedia PDF Downloads 69
6610 Indoor Air Pollution Control Using a Soil Biofilter

Authors: Daisy B. Badilla, Peter A. Gostomski

Abstract:

Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate.

Keywords: biofiltration, air pollution control, soil, toluene

Procedia PDF Downloads 10
6609 DURAFILE: A Collaborative Tool for Preserving Digital Media Files

Authors: Santiago Macho, Miquel Montaner, Raivo Ruusalepp, Ferran Candela, Xavier Tarres, Rando Rostok

Abstract:

During our lives, we generate a lot of personal information such as photos, music, text documents and videos that link us with our past. This data that used to be tangible is now digital information stored in our computers, which implies a software dependence to make them accessible in the future. Technology, however, constantly evolves and goes through regular shifts, quickly rendering various file formats obsolete. The need for accessing data in the future affects not only personal users but also organizations. In a digital environment, a reliable preservation plan and the ability to adapt to fast changing technology are essential for maintaining data collections in the long term. We present in this paper the European FP7 project called DURAFILE that provides the technology to preserve media files for personal users and organizations while maintaining their quality.

Keywords: artificial intelligence, digital preservation, social search, digital preservation plans

Procedia PDF Downloads 443
6608 Evaluating the Rationality of Airport Design from the Perspective of Passenger Experience: An Example of Terminal 3 of Beijing Capital International Airport

Authors: Yan Li, Yujiang Gao

Abstract:

Passengers are the main users of the airport. Whether the travel experience of passengers in the airport is comfortable or not is an important indicator for evaluating the reasonableness of airport design. Taking the Terminal 3 of Beijing Capital International Airport as an example, this paper analyzes the airport’s solution to the problem of passengers’ inconvenience caused by lost directions, excessive congestion, and excessively long streamlines during passenger use. First of all, by using the method of analyzing the design of architectural function streamlines, the design of interior spaces of buildings, and the interrelationship between interior design and passenger experience, it was first concluded that the airport is capable of performing the two major problems of easy disorientation and excessive congestion. Later, by using the method of analyzing architectural function streamlines and collecting passenger experience evaluations, it was concluded that the airport could not solve the inconvenience caused by excessively long streamlines to passengers. Finally came to the conclusion that the airport design meets the demand in terms of the overall design of the passenger experience, but the boarding line is still relatively long and some fly in the ointment.

Keywords: passengers’ experience, terminal 3 of Beijing capital international airport, lost directions, excessive congestion, excessively long streamlines

Procedia PDF Downloads 193
6607 Physiology of Temporal Lobe and Limbic System

Authors: Khaled A. Abdel-Sater

Abstract:

There are four areas of the temporal lobe. Primary auditory area (areas 41 and 42); it is for the perception of auditory impulse, auditory association area (area 22, 21, and 20): Areas 21 and 20 are for understanding and interpretation of auditory sensation, recognition of language, and long-term memories. Area 22, also called Wernicke’s area, and a sensory speech centre. It is for interpretation of auditory and visual information, formation of thoughts in the mind, and choice of words to be used. Ideas and thoughts originate in it. The limbic system is a part of cortical and subcortical structure forming a ring around the brainstem. Cortical structures are the orbitofrontal area, subcallosal gyrus, cingulate gyrus, parahippocampal gyrus, and uncus. Subcortical structures are the hypothalamus, hippocampus, amygdala, septum, paraolfactory area, anterior nucleus of the thalamus portions of the basal ganglia. There are several physiological functions of the limbic system, including regulation of behavior, motivation, and emotion.

Keywords: limbic system, motivation, emotions, temporal lobe

Procedia PDF Downloads 200
6606 Robotic Mini Gastric Bypass Surgery

Authors: Arun Prasad, Abhishek Tiwari, Rekha Jaiswal, Vivek Chaudhary

Abstract:

Background: Robotic Roux en Y gastric bypass is being done for some time but is technically difficult, requiring operating in both the sub diaphragmatic and infracolic compartments of the abdomen. This can mean a dual docking of the robot or a hybrid partial laparoscopic and partial robotic surgery. The Mini /One anastomosis /omega loop gastric bypass (MGB) has the advantage of having all dissection and anastomosis in the supracolic compartment and is therefore suitable technically for robotic surgery. Methods: We have done 208 robotic mini gastric bypass surgeries. The robot is docked above the head of the patient in the midline. Camera port is placed supra umbilically. Two ports are placed on the left side of the patient and one port on the right side of the patient. An assistant port is placed between the camera port and right sided robotic port for use of stapler. Distal stomach is stapled from the lesser curve followed by a vertical sleeve upwards leading to a long sleeve pouch. Jejunum is taken at 200 cm from the duodenojejunal junction and brought up to do a side to side gastrojejunostomy. Results: All patients had a successful robotic procedure. Mean time taken was 85 minutes. There were major intraoperative or post operative complications. No patient needed conversion or re-explorative surgery. Mean excess weight loss over a period of 2 year was about 75%. There was no mortality. Patient satisfaction score was high and was attributed to the good weight loss and minimal dietary modifications that were needed after the procedure. Long term side effects were anemia and bile reflux in a small number of patients. Conclusions: MGB / OAGB is gaining worldwide interest as a short simple procedure that has been shown to very effective and safe bariatric surgery. The purpose of this study was to report on the safety and efficacy of robotic surgery for this procedure. This is the first report of totally robotic mini gastric bypass.

Keywords: MGB, mini gastric bypass, OAGB, robotic bariatric surgery

Procedia PDF Downloads 295
6605 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 159
6604 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 179
6603 Analysis of Long-Term Response of Seawater to Change in CO₂, Heavy Metals and Nutrients Concentrations

Authors: Igor Povar, Catherine Goyet

Abstract:

The seawater is subject to multiple external stressors (ES) including rising atmospheric CO2 and ocean acidification, global warming, atmospheric deposition of pollutants and eutrophication, which deeply alter its chemistry, often on a global scale and, in some cases, at the degree significantly exceeding that in the historical and recent geological verification. In ocean systems the micro- and macronutrients, heavy metals, phosphor- and nitrogen-containing components exist in different forms depending on the concentrations of various other species, organic matter, the types of minerals, the pH etc. The major limitation to assessing more strictly the ES to oceans, such as pollutants (atmospheric greenhouse gas, heavy metals, nutrients as nitrates and phosphates) is the lack of theoretical approach which could predict the ocean resistance to multiple external stressors. In order to assess the abovementioned ES, the research has applied and developed the buffer theory approach and theoretical expressions of the formal chemical thermodynamics to ocean systems, as heterogeneous aqueous systems. The thermodynamic expressions of complex chemical equilibria, involving acid-base, complex formation and mineral ones have been deduced. This thermodynamic approach utilizes thermodynamic relationships coupled with original mass balance constraints, where the solid phases are explicitly expressed. The ocean sensitivity to different external stressors and changes in driving factors are considered in terms of derived buffering capacities or buffer factors for heterogeneous systems. Our investigations have proved that the heterogeneous aqueous systems, as ocean and seas are, manifest their buffer properties towards all their components, not only to pH, as it has been known so far, for example in respect to carbon dioxide, carbonates, phosphates, Ca2+, Mg2+, heavy metal ions etc. The derived expressions make possible to attribute changes in chemical ocean composition to different pollutants. These expressions are also useful for improving the current atmosphere-ocean-marine biogeochemistry models. The major research questions, to which the research responds, are: (i.) What kind of contamination is the most harmful for Future Ocean? (ii.) What are chemical heterogeneous processes of the heavy metal release from sediments and minerals and its impact to the ocean buffer action? (iii.) What will be the long-term response of the coastal ocean to the oceanic uptake of anthropogenic pollutants? (iv.) How will change the ocean resistance in terms of future chemical complex processes and buffer capacities and its response to external (anthropogenic) perturbations? The ocean buffer capacities towards its main components are recommended as parameters that should be included in determining the most important ocean factors which define the response of ocean environment at the technogenic loads increasing. The deduced thermodynamic expressions are valid for any combination of chemical composition, or any of the species contributing to the total concentration, as independent state variable.

Keywords: atmospheric greenhouse gas, chemical thermodynamics, external stressors, pollutants, seawater

Procedia PDF Downloads 143
6602 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver

Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen

Abstract:

This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).

Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network

Procedia PDF Downloads 75
6601 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study

Authors: Heba Kamal Mohamed

Abstract:

Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.

Keywords: tramadol, ovary, withdrawal, rats

Procedia PDF Downloads 292
6600 Analyzing Essential Patents of Mobile Communication Based on Patent Portfolio: Case Study of Long Term Evolution-Advanced

Authors: Kujhin Jeong, Sungjoo Lee

Abstract:

In the past, cross-licensing was made up of various application or commercial patents. Today, cross-licensing is restricted to essential patents, which has emphasized their importance significantly. Literature has shown that patent portfolio provides information for patent protection or strategy decision-making, but little empirical research has found strategic tool of essential patents. This paper will highlight four types of essential patent portfolio and analysis about each strategy in the field of LTE-A. Specifically we collected essential patents of mobile communication company through ETSI (European Telecommunication Standards Institute) and build-up portfolio activity, concentration, diversity, and quality. Using these portfolios, we can understand each company’s strategic character about the technology of LTE-A and comparison analysis of financial results. Essential patents portfolio displays a mobile communication company’s strategy and its strategy’s impact on the performance of a company.

Keywords: essential patent, portfolio, patent portfolio, essential patent portfolio

Procedia PDF Downloads 391
6599 Studying the Impact of Agricultural Producers Support Policy in Export Market

Authors: Yazdani Saeed, Rafiei Hamed, Nekoofar Farahnaz

Abstract:

Governments Policies play a major role in national and international Markets. Pistachio is one of the most important non-oil export commodity of Iran. Therefore, in this study the relation between the producer support policies and the export of Pistachio was examined. An econometric model (VAR) was applied to test the study hypothesis. According to the estimated coefficient in VAR model, lag of producer support index has a significant and negative effect on variation of Pistachio’s export in short term. In other word, in short term, export advantage index is dependent on the amount of producers support in previous period.

Keywords: producer support, export advantage, pistachio, Iran

Procedia PDF Downloads 47
6598 Literature Review: The Efficacy of Play-Based Therapy Programs in Decreasing Core Symptoms of Autism Spectrum Disorder

Authors: Rozan El-Khateeb

Abstract:

This literature review examines the effectiveness of therapy programs that utilize play as an intervention for reducing symptoms associated with Autism Spectrum Disorder (ASD). Play-based therapy approaches provide a child-centered and developmentally appropriate framework to address the core symptoms of ASD, including social communication deficits, restricted and repetitive behaviors, and sensory sensitivities. The review explores various play-based therapy strategies and their impact on improving social skills, communication abilities, adaptive behaviors, and overall functioning in individuals with ASD. The findings suggest that play-based therapy programs hold promise as effective interventions for reducing symptoms and enhancing the quality of life for individuals with ASD. However, further research is necessary to establish standardized protocols, identify optimal dosage and duration, and evaluate long-term outcomes.

Keywords: autism, ABA, play, NET, systematic review

Procedia PDF Downloads 76
6597 Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan

Authors: Moh’d Anwer Al-Shboul

Abstract:

The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy.

Keywords: energy supply resources, Arab spring, liquefied natural gas, pipeline, Jordan

Procedia PDF Downloads 142