Search results for: iterative hard thresholding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1483

Search results for: iterative hard thresholding

583 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

BACKGROUND: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. OBJECTIVE: This article tried to optimize the layout of troops’ cafeteria and to improve the overall efficiency of the dining process. METHODS: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. RESULTS: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interference reduced as well, which verified corresponding simulation results. CONCLUSIONS: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: layout optimization, dining efficiency, troops’ cafeteria, anylogic simulation, field experiment

Procedia PDF Downloads 128
582 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 85
581 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 115
580 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa

Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana

Abstract:

Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.

Keywords: contamination, mining activities, surface water, trace metals

Procedia PDF Downloads 304
579 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean

Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde

Abstract:

Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.

Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis

Procedia PDF Downloads 66
578 The Impact of Macroeconomic Factors on Tehran Stock Exchange Index during Economic and Oil Sanctions between January 2006 and December 2012

Authors: Hamed Movahedizadeh, Annuar Md Nassir, Mehdi Karimimalayer, Navid Samimi Sedeh, Ehsan Bagherpour

Abstract:

The aim of this paper is to evaluate Tehran’s Stock Exchange (TSE) performance regarding with impact of four macroeconomic factors including world crude Oil Price (OP), World Gold Price (GP), Consumer Price Index (CPI) and total Supplied Oil by Iran (SO) from January 2006 to December 2012 that Iran faced with economic and oil sanctions. Iran's exports of crude oil and lease condensate reduced to roughly 1.5 million barrels per day (bbl/d) in 2012, compared to 2.5 million bbl/d in 2011 due to hard sanctions. Monthly data are collected and subjected to a battery of tests through ordinary least square by EViews7. This study found that gold price and oil price are positively correlated with stock returns while total oil supplied and consumer price index have negative relationship with stock index, however, consumer price index tends to become insignificant in stock index. While gold price and consumer price index have short run relationship with TSE index at 10% of significance level this amount for oil price is significant at 5% and there is no significant short run relationship between supplied oil and Tehran stock returns. Moreover, this study found that all macroeconomic factors have long-run relationship with Tehran Stock Exchange Index.

Keywords: consumer price index, gold price, macroeconomic, oil price, sanction, stock market, supplied oil

Procedia PDF Downloads 475
577 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation

Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco

Abstract:

420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.

Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance

Procedia PDF Downloads 112
576 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 293
575 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 123
574 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound

Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu

Abstract:

Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.

Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model

Procedia PDF Downloads 276
573 Ti-Mo-N Nano-Grains Embedded into Thin MoSₓ-Based Amorphous Matrix: A Novel Structure for Superhardness and Ultra-Low Wear

Authors: Lina Yang, Mao Wen, Jianhong Chen, Kan Zhang

Abstract:

Molybdenum disulfide (MoS₂) represents a highly sought lubricant for reducing friction based on intrinsic layered structure, but for this reason, practical applications have been greatly restricted due to the fact that its low hardness would cause severe wear. Here, a novel TiMoN/MoSₓ composite coatings with TiMoN solid solution grains embedded into MoSₓ-based amorphous matrix has been successfully designed and synthesized, through magnetron co-sputtering technology. Desirably, in virtue of such special microstructure, superhardness and excellent toughness can be well achieved, along with an ultra-low wear rate at ~2×10⁻¹¹ mm³/Nm in the air environment, simultaneously, low friction at ~0.1 is maintained. It should be noted that this wear level is almost two orders of magnitude lower than that of pure TiN coating, and is, as we know, the lowest wear rate in dry sliding. Investigations of tribofilm reveal that it is amorphous MoS₂ in nature, and its formation arises directly from the MoSₓ amorphous matrix. Which contributes to effective lubrication behavior, coupled with excellent mechanical performances of such composite coating, exceptionally low wear can be guaranteed. The findings in this work suggest that the special composite structure makes it possible for the synthesis of super-hard and super-durable lubricative coating, offering guidance to synthesize ultrahigh performance protective coating for industrial application.

Keywords: hardness, MoS₂-containing composite coatings, toughness, tribological properties

Procedia PDF Downloads 142
572 Adult Attachment Security as a Predictor of Career Decision-Making Self-Efficacy among College Students in the United States

Authors: Mai Kaneda, Sarah Feeney

Abstract:

This study examined the association between adult attachment security and career decision-making self-efficacy (CDMSE) among college students in the United States. Previous studies show that attachment security is associated with levels of CDMSE among college students. Given that a majority of studies examining career development variables have used parental attachment measures, this study adds to understanding of this phenomenon by utilizing a broader measure of attachment. The participants included 269 college students (76% female) between the ages of 19-29. An anonymous survey was distributed online via social media as well as in hard copy format in classrooms. Multiple regression analyses were conducted to determine the relationship between anxious and avoidant attachment and CDMSE. Results revealed anxious attachment was a significant predictor of CDMSE (B = -.13, p = .01), such that greater anxiety in attachment was associated with lower levels of CDMSE. When accounting for anxious attachment, avoidant attachment was no longer significant as a predictor of CDMSE (B = -.12, p = .10). The variance in college CDMSE explained by the model was 7%, F(2,267) = 9.51, p < .001. Results for anxious attachment are consistent with existing literature that finds insecure attachment to be related to lower levels of CDMSE, however the non-significant results for avoidant attachment as a predictor of CDMSE suggest not all types of attachment insecurity are equally related to CDMSE. Future research is needed to explore the nature of the relationship between different dimensions of attachment insecurity and CDMSE.

Keywords: attachment, career decision-making, college students, self-efficacy

Procedia PDF Downloads 205
571 Cryptocurrency Forensics: Analysis on Bitcoin E-Wallet from Computer Source Evidence

Authors: Muhammad Nooraiman bin Noorashid, Mohd Sharizuan bin Mohd Omar, Mohd Zabri Adil bin Talib, Aswami Fadillah bin Mohd Ariffin

Abstract:

Nowadays cryptocurrency has become a global phenomenon known to most people. People using this alternative digital money to do a transaction in many ways (e.g. Used for online shopping, wealth management, and fundraising). However, this digital asset also widely used in criminal activities since its use decentralized control as opposed to centralized electronic money and central banking systems and this makes a user, who used this currency invisible. The high-value exchange of these digital currencies also has been a target to criminal activities. The cryptocurrency crimes have become a challenge for the law enforcement to analyze and to proof the evidence as criminal devices. In this paper, our focus is more on bitcoin cryptocurrency and the possible artifacts that can be obtained from the different type of digital wallet, which is software and browser-based application. The process memory and physical hard disk are examined with the aims of identifying and recovering potential digital evidence. The stage of data acquisition divided by three states which are the initial creation of the wallet, transaction that consists transfer and receiving a coin and the last state is after the wallet is being deleted. Findings from this study suggest that both data from software and browser type of wallet process memory is a valuable source of evidence, and many of the artifacts found in process memory are also available from the application and wallet files on the client computer storage.

Keywords: cryptocurrency, bitcoin, digital wallet, digital forensics

Procedia PDF Downloads 325
570 Disaster Management and Resilience: A Conceptual Synthesis of Local

Authors: Oshienemen Albert, Dilanthi Amaratunga, Richard Haigh

Abstract:

Globally, disasters of any form can affect the environment, built environment, the waterways, societies, nations and communities in diverse areas. The such impacts could cut across, economic loss, social setting, cultural and livelihood structures of affected population. Thus, the raise of disaster impacts across developing nations are alarming with decades impact due to the lack of hard and soft infrastructural development across communities, inconsistency in the governmental policy and implementation, making it difficult for disaster affected communities to bounce back when necessary, especially in Nigeria. The Nigeria disasters, especially oil spillages have affected diverse communities across the Niger Delta region for decades with little or nothing as external support for the broken livelihood structure, cultural and economic damages of the people. Though, in the spirit of contribution to the communities affected by oil spill and negative consequence of petroleum production, the federal government at different times established some impressionistic bodies and agencies to oversee the affairs of the region as with regards to oil spillages and development. Thus, the agencies contributions are yet to manifest in practice. This amplifies the quest for the structural clarities of the management systems and the resilience’s of the communities, to better equip the communities for any such disaster. Therefore, the study sets to explore the Nigerian disaster management systems and resilience concept at local community level. Thus, desk-based approach and interviews are employed for the synthesis while, drawing conclusion and recommendations.

Keywords: disaster, community, management, resilience

Procedia PDF Downloads 173
569 A Radiographic Superimposition in Orthognathic Surgery of Class III Skeletal Malocclusion

Authors: Albert Suryaprawira

Abstract:

Patients requiring correction of severe Class III skeletal discrepancy historically has been among the most challenging treatments for orthodontists. Correction of an aesthetic and functional problem is crucially important. This is a case report of an adult male aged 18 years who complained of difficulty in chewing and speaking. Patient has a prominent profile with mandibular excess. The pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. The panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, the pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, the post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition between those radiographs was performed to analyse the outcome. It includes the superimposition of the cranial base, maxilla, and mandible. Superimposition is important to describe the amount of hard and soft tissue movement. It is also important to predict the possibility of relapse after the surgery. The patient needs to understand all the surgical plan, outcome and relapse prevention. The surgery included mandibular set back by bilateral sagittal split osteotomies. Although the discrepancy was severe using this combination of treatment and the use of radiographic superimposition, an aesthetically pleasing and stable result was achieved.

Keywords: cephalometric, mandibular set back, orthognathic, superimposition

Procedia PDF Downloads 250
568 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 287
567 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle

Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar

Abstract:

This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.

Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle

Procedia PDF Downloads 386
566 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 366
565 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 118
564 Tom Stoppard: The Amorality of the Artist

Authors: Majeed Mohammed Midhin, Clare Finburgh

Abstract:

To maintain a healthy balanced loyalty between art and politics posits a debatable issue. The artist is always on the look out for the potential tension between those two realms. Therefore, one of the most painful dilemmas the artist finds is how to function in a society without sacrificing the aesthetic values of his/her work. In other words, the life-long awareness of failure which derives from the concept of the artist as caught between unflattering social realities and the need to invent genuine art forms becomes a fertilizing soil for the artists to dig deep into its origin. Thus, within the framework of this dilemma, the question of the responsibility of the artist and the relationship of the art to politics will be illuminating. The present paper tackles the idea of the amorality of the artist in selected plays by Tom Stoppard. However, Stoppard’s awareness of his situation as a refugee has led him to keep at a distance from politics. He tried hard to avoid any intervention into the realms of political debate, especially in his earliest work. On the one hand, it is not meant that he did not interest in politics as such, but rather he preferred to question it than to create a fixed ideological position. On the other hand, Stoppard’s refusal to intervene in politics is ascribed to his feeling of gratitude to Britain where he settled. As a result, Stoppard has frequently been criticized for a lack of political engagement and also for not leaning too much for the left when he does engage. His reaction to these public criticisms finds expression in his self-conscious statements which defensively stressed the artifice of his work. He, like Oscar Wilde thinks that the responsibility of the artist is devoted to the realm of his/her art. Consequently, his consciousness for the role of the artist is truly reflected in his two plays, Artist Descending a Staircase(1972) and Travesties(1974).

Keywords: amorality, dilemma, aesthetic, responsibility of the artist, political theatre

Procedia PDF Downloads 384
563 The Time-Frequency Domain Reflection Method for Aircraft Cable Defects Localization

Authors: Reza Rezaeipour Honarmandzad

Abstract:

This paper introduces an aircraft cable fault detection and location method in light of TFDR keeping in mind the end goal to recognize the intermittent faults adequately and to adapt to the serial and after-connector issues being hard to be distinguished in time domain reflection. In this strategy, the correlation function of reflected and reference signal is used to recognize and find the airplane fault as per the qualities of reflected and reference signal in time-frequency domain, so the hit rate of distinguishing and finding intermittent faults can be enhanced adequately. In the work process, the reflected signal is interfered by the noise and false caution happens frequently, so the threshold de-noising technique in light of wavelet decomposition is used to diminish the noise interference and lessen the shortcoming alert rate. At that point the time-frequency cross connection capacity of the reference signal and the reflected signal based on Wigner-Ville appropriation is figured so as to find the issue position. Finally, LabVIEW is connected to execute operation and control interface, the primary capacity of which is to connect and control MATLAB and LABSQL. Using the solid computing capacity and the bottomless capacity library of MATLAB, the signal processing turn to be effortlessly acknowledged, in addition LabVIEW help the framework to be more dependable and upgraded effectively.

Keywords: aircraft cable, fault location, TFDR, LabVIEW

Procedia PDF Downloads 465
562 Development of an Intervention Program for Moral Education of Undergraduate Students of Sport Sciences and Physical Education

Authors: Najia Zulfiqar

Abstract:

Imparting moral education is the need of time, considering the obvious moral decline in society. Recent research shows the downfall of moral competence among university students. The main objective of the present study was to develop moral development intervention strategies for undergraduate students of Sports and Physical Education. Using an interpretative phenomenological approach, insight into field-specific moral issues was gained through interviews with 7 subject experts and a focus-group discussion session with 8 students. Two research assistants who were trained in qualitative interviewing collected, transcribed and analyzed data into the MAXQDA software using content and discourse analyses. The identified moral issues in Sports and Physical Education were sports gambling and betting, pay-for-play, doping, coach misconduct, tampering, cultural bias, gender equity/nepotism, bullying/discrimination, and harassment. Next, intervention modules were developed for each moral issue based on hypothetical situations, and followed by guided reflection and dilemma discussion questions. The third moral development strategy was community services that included posture screening, diet plan for different age groups, open fitness ground training, exercise camps for physical fitness, balanced diet awareness camp, gymnastic camp, shoe assessment as per health standards, and volunteering for public awareness at the playground, gymnasium, stadium, park, etc. The intervention modules were given to four subject specialists for expert validation who were from different backgrounds within Sport Sciences. Upon refinement and finalization, four students were presented with these intervention modules and questioned about accuracy, relevance, comprehension, and content organization. Iterative changes were made in the content of the intervention modules to tailor them to the moral development needs of undergraduate students. This intervention will strengthen positive moral values and foster mature decision-making about right and wrong acts. As this intervention is easy to apply as a remedial tool, academicians and policymakers can use this to promote students’ moral development.

Keywords: community service, dilemma discussion, morality, physical education, university students.

Procedia PDF Downloads 62
561 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection

Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol

Abstract:

The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.

Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress

Procedia PDF Downloads 212
560 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser

Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt

Abstract:

This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.

Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet

Procedia PDF Downloads 201
559 Anthropomorphism in the Primate Mind-Reading Debate: A Critique of Sober's Justification Argument

Authors: Boyun Lee

Abstract:

This study aims to discuss whether anthropomorphism some scientists tend to use in cross-species comparison can be justified epistemologically, especially in the primate mind-reading debate. Concretely, this study critically analyzes Elliott Sober’s argument about mind-reading hypothesis (MRH), an anthropomorphic hypothesis which states that nonhuman primates (e.g., chimpanzee) are mind-readers like humans. Although many scientists consider anthropomorphism as an error and choosing anthropomorphic hypothesis like MRH without any definite evidence invalid, Sober advocates that anthropomorphism is supported by cladistic parsimony that suggests choosing the simplest hypothesis postulating the minimum number of evolutionary changes, which can be justified epistemologically in the mind-reading debate. However, his argument has several problems. First, Reichenbach’s theorem which Sober uses in process of showing that MRH has the higher likelihood than its competing hypothesis, behavior-reading hypothesis (BRH), does not fit in the context of inferring the evolutionary relationship. Second, the phylogenetic tree Sober supports is one of the possible scenarios of MRH, and even without this problem, it is difficult to prove that the possibility nonhuman primate species and human share mind-reading ability is higher than the possibility of the other case, considering how evolution occurs. Consequently, it seems hard to justify anthropomorphism of MRH under Sober’s argument. Some scientists and philosophers say that anthropomorphism sometimes helps observe interesting phenomena or make hypotheses in comparative biology. Nonetheless, we cannot determine that it provides answers about why and how the interesting phenomena appear or which of the hypotheses is better, at least the mind-reading debate, under the current state.

Keywords: anthropomorphism, cladistic parsimony, comparative biology, mind-reading debate

Procedia PDF Downloads 160
558 Characterising Performative Technological Innovation: Developing a Strategic Framework That Incorporates the Social Mechanisms That Promote Change within a Technological Environment

Authors: Joan Edwards, J. Lawlor

Abstract:

Technological innovation is frequently defined in terms of bringing a new invention to market through a relatively straightforward process of diffusion. In reality, this process is complex and non-linear in nature, and includes social and cognitive factors that influence the development of an emerging technology and its related market or environment. As recent studies contend technological trajectory is part of technological paradigms, which arise from the expectations and desires of industry agents and results in co-evolution, it may be realised that social factors play a major role in the development of a technology. It is conjectured that collective social behaviour is fuelled by individual motivations and expectations, which inform the possibilities and uses for a new technology. The individual outlook highlights the issues present at the micro-level of developing a technology. Accordingly, this may be zoomed out to realise how these embedded social structures, influence activities and expectations at a macro level and can ultimately strategically shape the development and use of a technology. These social factors rely on communication to foster the innovation process. As innovation may be defined as the implementation of inventions, technological change results from the complex interactions and feedback occurring within an extended environment. The framework presented in this paper, recognises that social mechanisms provide the basis for an iterative dialogue between an innovator, a new technology, and an environment - within which social and cognitive ‘identity-shaping’ elements of the innovation process occur. Identity-shaping characteristics indicate that an emerging technology has a performative nature that transforms, alters, and ultimately configures the environment to which it joins. This identity–shaping quality is termed as ‘performative’. This paper examines how technologies evolve within a socio-technological sphere and how 'performativity' facilitates the process. A framework is proposed that incorporates the performative elements which are identified as feedback, iteration, routine, expectations, and motivations. Additionally, the concept of affordances is employed to determine how the role of the innovator and technology change over time - constituting a more conducive environment for successful innovation.

Keywords: affordances, framework, performativity, strategic innovation

Procedia PDF Downloads 198
557 Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling

Authors: Faiz Khan Mohammad, Saumya Ray Chaudhari, Raghunathan Rengaswamy, Swagatika Sahoo

Abstract:

Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics.

Keywords: cholera, vibrio cholera El. tor, vibrio cholera classical, acetate

Procedia PDF Downloads 149
556 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.

Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil

Procedia PDF Downloads 423
555 Impact of America's Anti-Ballistic Missile System (ABMS) on Power Dynamics of the World

Authors: Fehmeen Anwar, Ujala Liaqat

Abstract:

For over half a century, U.S. and the Soviet Union have been at daggers drawn with each other. Both leading powers of the world have been struggling hard to surpass each other in military and other technological fields. This neck-to-neck competition turned in favour of U.S. in the early 1990s when USSR had to face economic stagnation and later dismemberment of several of its states. The predominance of U.S. is still evident to date, rather it continues to grow. With this proposed defence program i.e. Anti-Ballistic Missile System, the U.S. will have a considerable chance of intercepting any nuclear strike by Russia, which re-asserts U.S. dominance in the region and creating a security dilemma for Russia and other states. The question is whether America’s recent nuclear deterrence project is merely to counter nuclear threats from Iran and North Korea or is it purely directed towards Russia, thus ensuring complete military supremacy in the world. Although U.S professes to direct its Anti-Ballistic Missile System (ABMS) against the axis of evil (Iran and North Korea), yet the deployment of this system in the East European territory undermines the Russian nuclear strategic capability, as this enables U.S. to initiate an attack and guard itself from retaliatory strike, thus disturbing the security equilibrium in Europe. The implications of this program can lead to power imbalance which can lead to the emergence of fundamentally different paradigm of international politics.

Keywords: Anti-Ballistic Missile System (ABMS), cold-war, axis of evil, power dynamics

Procedia PDF Downloads 283
554 A Risk-Based Approach to Construction Management

Authors: Chloe E. Edwards, Yasaman Shahtaheri

Abstract:

Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.

Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering

Procedia PDF Downloads 97