Search results for: graph representation of circuit networks
4052 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS
Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu
Abstract:
The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS
Procedia PDF Downloads 4074051 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 1234050 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2284049 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.Keywords: routing, sensor, survey, wireless sensor networks, WSNs
Procedia PDF Downloads 1824048 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 874047 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology
Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco
Abstract:
Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning
Procedia PDF Downloads 704046 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1384045 Monitoring a Membrane Structure Using Non-Destructive Testing
Authors: Gokhan Kilic, Pelin Celik
Abstract:
Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring
Procedia PDF Downloads 924044 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models
Authors: Yahia. Kourd, N. Guersi D. Lefebvre
Abstract:
In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor
Procedia PDF Downloads 6364043 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues
Authors: Akram Waheb Nasef Alzordoky
Abstract:
The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 214042 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks
Authors: Rahul Malhotra
Abstract:
The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.Keywords: routing protocol, MANET, AODV, On Demand Distance Vector Routing, DSR, Dynamic Source Routing
Procedia PDF Downloads 2754041 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1254040 Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007
Authors: S. Boorboor, S. A. H. Feghhi, H. Jafari
Abstract:
The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today’s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from ID-VG characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems.Keywords: threshold voltage shift, MOS transistor, linear extrapolation, gamma irradiation
Procedia PDF Downloads 2834039 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining
Procedia PDF Downloads 2184038 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique
Authors: Dibakar Chakrabarty, Mebada Suiting
Abstract:
Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM
Procedia PDF Downloads 2484037 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power
Procedia PDF Downloads 2354036 Media Representation of Romanian Migrants in the Italian Media: A Comparative Study
Authors: Paula-Catalina Meirosu
Abstract:
The economic migration (intra-EU) is a topic of debate in the public space in both countries of origin and countries of destination. Since the 1990s, after the collapse of communist regimes and then the accession of some former communist countries to the EU, the migratory flows of migrants (including Romanian migrants) to EU countries has been increased constantly. Italy is one of the main countries of destination among Romanians since at the moment Italy hosts more than one million Romanian migrants. Based on an interdisciplinary analytical framework focused on the theories in the field of transnationalism, media and migration studies and critical media analysis, this paper investigates the media construction of intra-EU economic migration in the Italian press from two main perspectives. The first point of view is the media representation of Romanian migrants in the Italian press in a specific context: the EU elections in 2014. The second one explores the way in which Romanian journalists use the media in the destinations countries (such as Italy) as a source to address the issue of migration. In this context, the paper focuses on online articles related to the Romanian migrants’ representation in the media before and during the EU elections in two newspapers (La Repubblica from Italy and Adevarul from Romania), published during January-May 2014. The methodology is based on a social-constructivist approach, predominantly discursive and includes elements of critical discourse analysis (CDA) to identify the patterns of Romanian migrants in the Italian press as well as strategies for building categories, identities, and roles of migrants. The aim of such an approach is to find out the dynamic of the media discourse on migration from a destination country in the light of a European electoral context (EU elections) and based on the results, to propose scenarios for the elections to be held this year.Keywords: migration, media discourse, Romanian migrants, transnationalism
Procedia PDF Downloads 1344035 Energy Efficient Routing Protocol with Ad Hoc On-Demand Distance Vector for MANET
Authors: K. Thamizhmaran, Akshaya Devi Arivazhagan, M. Anitha
Abstract:
On the case of most important systematic issue that must need to be solved in means of implementing a data transmission algorithm on the source of Mobile adhoc networks (MANETs). That is, how to save mobile nodes energy on meeting the requirements of applications or users as the mobile nodes are with battery limited. On while satisfying the energy saving requirement, hence it is also necessary of need to achieve the quality of service. In case of emergency work, it is necessary to deliver the data on mean time. Achieving quality of service in MANETs is also important on while. In order to achieve this requirement, Hence, we further implement the Energy-Aware routing protocol for system of Mobile adhoc networks were it being proposed, that on which saves the energy as on every node by means of efficiently selecting the mode of energy efficient path in the routing process by means of Enhanced AODV routing protocol.Keywords: Ad-Hoc networks, MANET, routing, AODV, EAODV
Procedia PDF Downloads 3714034 Efficient Chess Board Representation: A Space-Efficient Protocol
Authors: Raghava Dhanya, Shashank S.
Abstract:
This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.Keywords: chess, optimisation, encoding, bit manipulation
Procedia PDF Downloads 504033 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City
Authors: Christian Kapuku, Seung-Young Kho
Abstract:
An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.Keywords: geographic information system (GIS), network construction, transportation database, open source data
Procedia PDF Downloads 1674032 A New Realization of Multidimensional System for Grid Sensor Network
Authors: Yang Xiong, Hua Cheng
Abstract:
In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems
Procedia PDF Downloads 6554031 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol
Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani
Abstract:
Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.Keywords: heuristics routing, intelligent routing, VANET, route optimization
Procedia PDF Downloads 1784030 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 2894029 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps
Procedia PDF Downloads 1254028 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces
Authors: Monika Rawat, Rahul Kumar
Abstract:
Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation
Procedia PDF Downloads 1964027 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 104026 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks
Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul
Abstract:
Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.Keywords: control and protection systems, distributed generation, renewable energy, very small power producers
Procedia PDF Downloads 4774025 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony
Procedia PDF Downloads 3794024 Artificial Neural Networks Controller for Power System Voltage Improvement
Authors: Sabir Messalti, Bilal Boudjellal, Azouz Said
Abstract:
In this paper, power system Voltage improvement using wind turbine is presented. Two controllers are used: a PI controller and Artificial Neural Networks (ANN) controllers are studied to control of the power flow exchanged between the wind turbine and the power system in order to improve the bus voltage. The wind turbine is based on a doubly-fed induction generator (DFIG) controlled by field-oriented control. Indirect control is used to control of the reactive power flow exchanged between the DFIG and the power system. The proposed controllers are tested on power system for large voltage disturbances.Keywords: artificial neural networks controller, DFIG, field-oriented control, PI controller, power system voltage improvement
Procedia PDF Downloads 4644023 New Trends in Pakistani Cinema: Muslim Women, Cinematic Struggle and the Global World
Authors: Sana Zia
Abstract:
One of the most important questions for research on Muslim women's representation is the relationship between Islam and women’s situation in Islamic countries. In this context, certain questions can be raised like is it possible to analyze women’s situation in Islamic countries like Pakistan? Or what is the relationship between Islam and patriarchy? So this paper will examine all these questions by analysing Muslim women's representation in Pakistani Cinema. It is also significant to note that despite political and religious constraints in Muslim countries, in particular, Pakistan, women have not only been part of the film industry for long, but they also have chosen films as their feminist tool to question and expose the effects of patriarchy, religious fundamentalism, and gender-specific socio-cultural oppression. The religious-cultural ethos that could include gender-specific restrictions and limitations on their creative expression as Muslim women in an Islamic society. A new wave of Pakistani cinema is pivoting around strong Muslim female characters and opened up a new thought about Islamic women.Their contributions and success through this medium emphasized the need to investigate the significance and effectiveness of contemporary cinema as a tool of resistance and cross-cultural communication in a Muslim society. So this research can also provide a better understanding about Islam that needs to be modernized and reclaimed from the clutches of fundamentalism and extremism. This paper thus investigates the interrelation of women's representation and Pakistani cinema by analysing two films ‘Bol: To speak up’ and ‘Dukhter: Daughter’. The feminist analysis of these films not only helps to understand the new trends and dimensions in representation of Muslim women in Pakistani cinema, but this also helps to raise awareness globally regarding the depiction of Muslim women. So to foreground the above mentioned discussion, the films under study helps to evaluate their significance, the role they play towards activism, resistance, and global awareness in terms of what could be termed as a Muslim woman. The paper thus provides a valuable insight that how and why Islam is being used as a mechanism to merge social, political and economic factors to define the rights and conditions of Pakistani Muslim women and highlight the cinematic struggle of the film maker’s which by using films as an awareness tool are going to highlight the problems and issues of Muslim women in the global world.Keywords: Muslim women, Pakistani cinema, patriarchy, religious fundamentalism
Procedia PDF Downloads 259