Search results for: ant colony algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2261

Search results for: ant colony algorithms

1361 An Efficient Strategy for Relay Selection in Multi-Hop Communication

Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song

Abstract:

This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).

Keywords: multi-hop, OFDM, relay, relaying selection

Procedia PDF Downloads 445
1360 A Rapid Code Acquisition Scheme in OOC-Based CDMA Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We propose a code acquisition scheme called improved multiple-shift (IMS) for optical code division multiple access systems, where the optical orthogonal code is used instead of the pseudo noise code. Although the IMS algorithm has a similar process to that of the conventional MS algorithm, it has a better code acquisition performance than the conventional MS algorithm. We analyze the code acquisition performance of the IMS algorithm and compare the code acquisition performances of the MS and the IMS algorithms in single-user and multi-user environments.

Keywords: code acquisition, optical CDMA, optical orthogonal code, serial algorithm

Procedia PDF Downloads 540
1359 Expression of Inflammatory and Cell Death Genes and DNA Damage Induced by Endotoxic Shock in Laying Hens

Authors: Mariam G. Eshak, Ahmed Abbas, M. I. El-Sabry, M. M. Mashaly

Abstract:

This investigation was conducted to determine the physiological response and evaluate the expression of inflammatory and cell death genes and DNA damage induced by endotoxic shock in laying hens. Endotoxic shock was induced by a single intravenous injection of 107 Escherichia coli (E. coli,) colony/hen. In the present study, 240 forty-week-old laying hens (H&N) were randomly assigned into 2 groups with 3 replicates of 40 birds each. Hens were reared in battery cages with wire floors in an open-sided housing system under natural conditions. Housing and general management practices were similar for all groups. At 42-wk of age, 45 hens from the first group (15 replicate) were infected with E. coli, while the same number of hens from the second group was injected with saline and served as a control. Heat shock protein-70 (HSP-70) expression, plasma corticosterone concentration, body temperature, and the gene expression of bax, caspase-3 activity, P38, Interlukin-1β (Il-1β), and tumor necrosis factor alpha (TNF-α) genes and DNA damage in the brain and liver were measured. Hens treated with E. coli showed significant (P≤0.05) increase of body temperature by 1.2 ᴼC and plasma corticosterone by 3 folds compared to the controls. Further, hens injected with E.Coli showed markedly over-expression of HSP-70 and increase DNA damage in brain and liver. These results were synchronized with activating cell death program since our data showed significant (P≤0.05) high expression of bax and caspase-3 activity genes in the brain and liver. These results were related to remarkable over-inflammation gene expression of P38, IL-1β, and TNF-α in brain and liver. In conclusion, our results indicate that endotoxic shock induces inflammatory physiological response and triggers cell death program by promoting P38, IL-1β, and TNF-α gene expression in the brain and liver.

Keywords: chicken, DNA damage, Escherichia coli, gene expression, inflammation

Procedia PDF Downloads 346
1358 Isolation and Identification of Fungi from Different Types of Medicinal Plants Cultivated in Ecuador

Authors: Ana Paola Echavarria, Mariuxi Medina, Haydelba D'Armas, Carmita Jaramillo, Diana San Martin

Abstract:

The use of medicinal plants is one of the oldest and most extended medical therapies that goes back to prehistoric times, and nowadays, they are also used in the preparation of phytopharmaceuticals with options to cure diseases. The test for the determination of fungi was carried out in the Pharmacy Pilot Plant (treatment of the leaves of the plant species) and the Microbiology Laboratory (determination of fungi of the plant species, using growth medium called Sabouraud agar plus the vegetal sample), of the Academic Unit of Chemical Sciences and Health, of the Universidad Tecnica de Machala. Subsequently, colony counting was performed, both macroscopic, which is determined in the growth medium of the seeding, and microscopic, to identify the germinative forms using blue lactophenol. The procedure was repeated in duplicate to replicate the results data. The determination of the total fungal content of the following plant species was evaluated: Cymbopogon citratus (lemon verbena), Melissa officinalis (lemon balm), Taraxacum officinale (dandelion), Artemisia absinthium (absinthe), Piper carpunya (guaviduca), Moringa oleifera (moringa), Coriandrum sativum (coriander), Momordica charantia (achochilla), Borago officinalis (borage), Aloysia citriodora (cedron), Ambrosia artemisifolia (altamisa) and Ageratum conyzoides (mastrante). The results obtained showed that all the samples of the twelve plant species studied developed filamentous fungi, with great variability of them, within the permissible limits and contemplated by the Ecuadorian Institute of Normalization (INEN), being suitable as raw material for its use in the preparation of nutraceuticals and medicinal products or phytodrugs; with the exception of A. conyzoides (mastranto) which is the only species that exceeds the regulation in the average of dilutions.

Keywords: colonies, fungi, medicinal plants, microbiological quality, Sabouraud agar

Procedia PDF Downloads 151
1357 Error Analysis of Wavelet-Based Image Steganograhy Scheme

Authors: Geeta Kasana, Kulbir Singh, Satvinder Singh

Abstract:

In this paper, a steganographic scheme for digital images using Integer Wavelet Transform (IWT) is proposed. The cover image is decomposed into wavelet sub bands using IWT. Each of the subband is divided into blocks of equal size and secret data is embedded into the largest and smallest pixel values of each block of the subband. Visual quality of stego images is acceptable as PSNR between cover image and stego is above 40 dB, imperceptibility is maintained. Experimental results show better tradeoff between capacity and visual perceptivity compared to the existing algorithms. Maximum possible error analysis is evaluated for each of the wavelet subbands of an image.

Keywords: DWT, IWT, MSE, PSNR

Procedia PDF Downloads 504
1356 A Survey on Concurrency Control Methods in Distributed Database

Authors: Seyed Mohsen Jameii

Abstract:

In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.

Keywords: distributed database, two phase locking protocol, transaction, concurrency

Procedia PDF Downloads 352
1355 Combinational Therapeutic Targeting of BRD4 and CDK7 Synergistically Induces Anticancer Effects in Hepatocellular Carcinoma

Authors: Xinxiu Li, Chuqian Zheng, Yanyan Qian, Hong Fan

Abstract:

Objectives: In hepatocellular carcinoma (HCC), oncogenes are continuously and robustly transcribed due to aberrant expression of essential components of the trans-acting super-enhancers (SE) complex. Preclinical and clinical trials are now being conducted on small-molecule inhibitors that target core-transcriptional components, including as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7), in a number of malignant tumors. This study aims to explore whether co-overexpression of BRD4 and CDK7 is a potential marker of worse prognosis and a combined therapeutic target in HCC. Methods: The expression pattern of BRD4 and CDK7 and their correlation with prognosis in HCC were analyzed by RNA sequencing data and survival data of HCC patients from TCGA and GEO datasets. The protein levels of BRD4 and CDK7 were determined by immunohistochemistry (IHC), and survival data of patients were analyzed using the Kaplan-Meier method. The mRNA expression levels of genes in HCC cell lines were evaluated by quantitative PCR (q-PCR). CCK-8 and colony formation assays were conducted to assess cell proliferation of HCC upon treatment with BRD4 inhibitor JQ1 or/and CDK7 inhibitor THZ1. Results: It was shown that BRD4 and CDK7 were often overexpressed in HCCs and were associated with poor prognosis of HCC by analyzing the TCGA and GEO datasets. BRD4 or CDK7 overexpression was related to a lower survival rate. It's interesting to note that co-overexpression of CDK7 and BRD4 was a worse prognostic factor in HCC. Treatment with JQ1 or THZ1 alone had an inhibitory effect on cell proliferation; however, when JQ1 and THZ1 were combined, there was a more notable suppression of cell growth. At the same time, the combined use of JQ1 and THZ1 synergistically suppresses the expression of HCC driver genes. Conclusion: Our research revealed that BRD4 and CDK7 coupled can be a useful biomarker in HCC prognosis and the combination of JQ1 and THZ1 can be a promising therapeutic therapy against HCC.

Keywords: BRD4, CDK7, cell proliferation, combined inhibition

Procedia PDF Downloads 54
1354 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 359
1353 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 360
1352 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
1351 A Comparative Study of Multi-SOM Algorithms for Determining the Optimal Number of Clusters

Authors: Imèn Khanchouch, Malika Charrad, Mohamed Limam

Abstract:

The interpretation of the quality of clusters and the determination of the optimal number of clusters is still a crucial problem in clustering. We focus in this paper on multi-SOM clustering method which overcomes the problem of extracting the number of clusters from the SOM map through the use of a clustering validity index. We then tested multi-SOM using real and artificial data sets with different evaluation criteria not used previously such as Davies Bouldin index, Dunn index and silhouette index. The developed multi-SOM algorithm is compared to k-means and Birch methods. Results show that it is more efficient than classical clustering methods.

Keywords: clustering, SOM, multi-SOM, DB index, Dunn index, silhouette index

Procedia PDF Downloads 599
1350 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P. W. Tsai, J. W. Chen, C. W. Chen, C. Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method

Procedia PDF Downloads 685
1349 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 132
1348 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving

Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Müller

Abstract:

In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.

Keywords: disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving

Procedia PDF Downloads 563
1347 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 110
1346 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory

Authors: Liqin Zhang, Liang Yan

Abstract:

This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.

Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization

Procedia PDF Downloads 125
1345 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment

Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving

Abstract:

We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.

Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic

Procedia PDF Downloads 607
1344 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 498
1343 A Survey of Grammar-Based Genetic Programming and Applications

Authors: Matthew T. Wilson

Abstract:

This paper covers a selection of research utilizing grammar-based genetic programming, and illustrates how context-free grammar can be used to constrain genetic programming. It focuses heavily on grammatical evolution, one of the most popular variants of grammar-based genetic programming, and the way its operators and terminals are specialized and modified from those in genetic programming. A variety of implementations of grammatical evolution for general use are covered, as well as research each focused on using grammatical evolution or grammar-based genetic programming on a single application, or to solve a specific problem, including some of the classically considered genetic programming problems, such as the Santa Fe Trail.

Keywords: context-free grammar, genetic algorithms, genetic programming, grammatical evolution

Procedia PDF Downloads 187
1342 Immigration in British Southern Cameroons from 2016 to 2020

Authors: Geraldine Ambe

Abstract:

Cameroon is a country in a country in Central Africa. Before the first World War, Germany colonized Cameroon, including some parts of Gabon, Chad, Nigeria, and the Central African Republic. After the war, the United Nations divided most of the colony into Britain and France. In 1960, Eastern Cameroon (‘La Republique du Cameroon’) gained its independence from France while British Southern Cameroons obtained its independence from Britain. The two entities agreed to live together as a federal state officially called the Federal Republic of Cameroon. In 1962, the name of the name of the country was changed from the Federal Republic of Cameroon to the United Republic of Cameroon, while the Prime Minister of Western Cameroon was moved to Yaounde. In 1984, President Paul Biya singlehandedly changed the name to the Republic of Cameroon, implying that Southern Cameroon is not recognized in the union again. From the words of Am Cohen, the two territories came together to form a federal government with one currency, one army, and one foreign policy like states in the United States of America. However, the name Republic of Cameroon (‘La Republique du Cameroun’) does not recognize BSC, and this is exactly what has been practiced: politics of exclusion and excessive centralization in Yaounde. In 2016, teachers and Lawyers started strikes to call the attention of the government on the inhalation of the English culture/people. They were greeted with guns, causing the radicalization of the youths. The civil society came together to form a union to address the issues facing the people, and the government took their leaders and sentenced them to live imprisonment. The consequence was a civil war with nobody to dialogue with. Out of Cameroon, more than half a million people from BSC have been taking dangerous trips through the air, land, and sea. In the jungles and the deserts, the snow of Europe, these people have been seen for the last 4 years. This paper will present some personalities, political fractions, and their stands of decentralization, federalism, and independence as the war continues. The paper will further look at the consequence of this crisis on migration in Central and Eastern Europe.

Keywords: British Southern Cameroons, decolonization, Second World War, dialogue, civil war, immigration

Procedia PDF Downloads 204
1341 Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties

Authors: Sammani Danwawu Abdullahi

Abstract:

Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems.

Keywords: counting with uncertainties, mathematical programming, optimization, vertex enumeration

Procedia PDF Downloads 357
1340 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation

Authors: Abdulmajid Mukhtar Afat

Abstract:

This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.

Keywords: finite automata, subset construction, DFA, NFA

Procedia PDF Downloads 426
1339 The Case for Creativity in the Metaverse

Authors: D. van der Merwe

Abstract:

As the environment and associated media in which creativity is expressed transitions towards digital spaces, that same creativity undergoes a transition from individual to social forms of expression. This paper explores how the emerging social construction collectively called ‘The Metaverse’ will fundamentally alter creativity: by examining creativity as a social rather than individual process, as well as the mimetic logic underlying the platforms in which this creativity is expressed, a crisis in identity, commodification and social programming is revealed wherein the artist is more a commodity than their creations, resulting in prosthetic personalities pandering to an economic logic driven by biased algorithms. Consequently the very aura of the art and creative media produced within the digital domain must be re-assessed in terms of its cultural and exhibition value.

Keywords: aura, commodification, creativity, metaverse, mimesis, social programming

Procedia PDF Downloads 11
1338 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 75
1337 Implementation of Iterative Algorithm for Earthquake Location

Authors: Hussain K. Chaiel

Abstract:

The development in the field of the digital signal processing (DSP) and the microelectronics technology reduces the complexity of the iterative algorithms that need large number of arithmetic operations. Virtex-Field Programmable Gate Arrays (FPGAs) are programmable silicon foundations which offer an important solution for addressing the needs of high performance DSP designer. In this work, Virtex-7 FPGA technology is used to implement an iterative algorithm to estimate the earthquake location. Simulation results show that an implementation based on block RAMB36E1 and DSP48E1 slices of Virtex-7 type reduces the number of cycles of the clock frequency. This enables the algorithm to be used for earthquake prediction.

Keywords: DSP, earthquake, FPGA, iterative algorithm

Procedia PDF Downloads 389
1336 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 38
1335 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 419
1334 Selection of Relevant Servers in Distributed Information Retrieval System

Authors: Benhamouda Sara, Guezouli Larbi

Abstract:

Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach.

Keywords: distributed information retrieval, relevance, server selection, collection selection

Procedia PDF Downloads 312
1333 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 513
1332 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510