Search results for: Escherichia coli bacteria
960 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites
Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano
Abstract:
Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene
Procedia PDF Downloads 129959 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation
Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar
Abstract:
The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase
Procedia PDF Downloads 234958 An Antifungal Peptide from Actinobacteria (Streptomyces Sp. TKJ2): Isolation and Partial Characterization
Authors: Abdelaziz Messis, Azzeddine Bettache, Nawel Boucherba, Said Benallaoua, Mouloud Kecha
Abstract:
Actinobacteria are of special biotechnological interest since they are known to produce chemically diverse compounds with a wide range of biological activity. This distinct clade of Gram-positve bacteria include some of the key antibiotic producers and are also sources of several bioactive compounds, established commercially a newly filamentous bacteria was recovered from Tikjda forest soil (Algeria) for its high antifungal activity against various pathogenic and phytopathogenic fungi. The nucleotide sequence of the 16S rRNA gene (1454 pb) of Streptomyces sp. TKJ2 exhibited close similarity (99 %) with other Streptomyces16S rRNA genes. Antifungal metabolite production of Streptomyces sp TKJ2 was evaluated using six different fermentation media. The extracellular products contained potent antifungal agents. Antifungal protein produced by Streptomyces sp. TKJ2 on PCA medium has been purified by ammonium sulfate precipitation, SPE column chromatography and high-performance liquid chromatography in a reverse-phase column. The UV chromatograms of the active fractions obtained at 214 nm by NanoLC-ESI-MS/MS have different molecular weights. The F20 Peptidic fraction obtained from culture filtrat of Streptomyces sp. TKJ2 precipitated at 30% of ammonium sulfate was selected for analysis by infusion ESI-MS which yielded a singly charged ion mass of 437.17 Da.Keywords: actinobacteria, antifungal protein, chromatography, Streptomyces
Procedia PDF Downloads 383957 Understanding the Mechanisms of Salmonella Typhimurium Resistance to Cannabidiol (CDB)
Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai, Olufemi S. Ajayi
Abstract:
The recalcitrance of pathogenic bacteria indicates that millions of people who are at risk of infection arising from chronic diseases, surgery, organ transplant, diabetes, and several other debilitating diseases present an aura of potentially untreatable illness due to resistance development. Antimicrobial resistance has successfully become a global health menace, and resistances are often acquired by bacteria through health-care-related incidence (HRI) orchestrated by multi-drug resistant (MDR) and extended drug-resistant pathogens (EDRP). To understand the mechanisms S. Typhimurium uses to resist CDB, we study the abundance of LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of susceptible and resistant S. Typhimurium. Using qPCR, we also analyzed the expression of selected genes known for enabling resistance in S. Typhimurium. We found high abundance of LPS, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of and high expression of resistant genes in S. Typhimurium compared to the susceptible strain. LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid and genes such as Fims, integrons, blaTEM are important indicators of resistance development of S. typhimurium.Keywords: antimicrobials, resistance, Cannabidiol, Salmonella, blaTEM, fimA, Lipopolysaccharide, Ergosterols
Procedia PDF Downloads 87956 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions
Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude
Abstract:
Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata
Procedia PDF Downloads 190955 Control of Spoilage Fungi by Lactobacilli
Authors: Laref Nora, Guessas Bettache
Abstract:
Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity
Procedia PDF Downloads 334954 Biotechnological Methods for the Grouting of the Tunneling Space
Authors: V. Ivanov, J. Chu, V. Stabnikov
Abstract:
Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space
Procedia PDF Downloads 208953 Risk Factors for Severe Typhoid Fever in Children: A French Retrospective Study about 78 Cases from 2000-2017 in Six Parisian Hospitals
Authors: Jonathan Soliman, Thomas Cavasino, Virginie Pommelet, Lahouari Amor, Pierre Mornand, Simon Escoda, Nina Droz, Soraya Matczak, Julie Toubiana, François Angoulvant, Etienne Carbonnelle, Albert Faye, Loic de Pontual, Luu-Ly Pham
Abstract:
Background: Typhoid and paratyphoid fever are systemic infections caused by Salmonella enterica serovar Typhi or paratyphi (A, B, C). Children traveling to tropical areas are at risk to contract these diseases which can be complicated. Methods: Clinical, biological and bacteriological data were collected from 78 pediatric cases reported between 2000 and 2017 in six Parisian hospitals. Children aged 0 to 18 years old, with a diagnosis of typhoid or paratyphoid fever confirmed by bacteriological exams, were included. Epidemiologic, clinical, biological features and presence of multidrug-resistant (MDR) bacteria or intermediate susceptibility to ciprofloxacin (nalidixic acid resistant) were examined by univariate analysis and by logistic regression analysis to identify risk factors of severe typhoid in children. Results: 84,6% of the children were imported cases of typhoid fever (n=66/78) and 15,4% were autochthonous cases (n=12/78). 89,7% were caused by S.typhi (n=70/78) and 12,8% by S.paratyphi (n=10/78) including 2 co-infections. 19,2% were intrafamilial cases (n=15/78). Median age at diagnosis was 6,4 years-old [6 months-17,9 years]. 28,2% of the cases were complicated forms (n=22/78): digestive (n=8; 10,3%), neurological (n=7; 9%), pulmonary complications (n=4; 5,1%) and hemophagocytic syndrome (n=4; 5,1%). Only 5% of the children had prior immunization with typhoid non-conjugated vaccine (n=4/78). 28% of the cases (n=22/78) were caused by resistant bacteria. Thrombocytopenia and diagnosis delay was significantly associated with severe infection (p= 0.029 and p=0,01). Complicated forms were more common with MDR (p=0,1) and not statistically associated with a young age or sex in this study. Conclusions: Typhoid and paratyphoid fever are not rare in children back from tropical areas. This multicentric pediatric study seems to show that thrombocytopenia, diagnosis delay, and multidrug resistant bacteria are associated with severe typhoid fever and complicated forms in children.Keywords: antimicrobial resistance, children, Salmonella enterica typhi and paratyphi, severe typhoid
Procedia PDF Downloads 183952 Foodborne Outbreak Calendar: Application of Time Series Analysis
Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova
Abstract:
The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality
Procedia PDF Downloads 130951 Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers
Authors: Baiyeri R. M, Oloriegbe Y. A., Saad A. O., Yusuf, K. O.
Abstract:
Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas.Keywords: magnetised water, sow sand filter, portable water, activated carbon
Procedia PDF Downloads 136950 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data
Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan
Abstract:
Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy
Procedia PDF Downloads 172949 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas
Procedia PDF Downloads 222948 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma
Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral
Abstract:
Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial
Procedia PDF Downloads 245947 Anti-Microbial Activity of Senna garrettiana Extract
Authors: Pun Jankrajangjaeng
Abstract:
Senna garrettiana is a climatic tropical plant in Southeast Asia. Senna garrettiana (Craib) is used as a medicinal plant in Thailand, in which the experiment reported that the plant contains triterpenoids, ligans, phenolics, and fungal metabolites. Thus, it is also reported that the plant possesses interesting biological activity such as antioxidant activity. Therefore, Senna garrettiana is selected to examine the antimicrobial activity. The purpose of this study is to examine the antimicrobial activity of Senna garrettiana (crab) extract against Gram-positive Staphylococcus aureus and Gram-negative Salmonella typhi, and the fungus Candida albicans. This study performed the agar disk-diffusion method and broth microdilution by using five concentrations of plant extract to determine the minimum inhibitory concentration (MIC) of S. garrettiana extract. The result showed that S. garrettiana extract gave the maximum zone inhibition of 11.7 mm, 13.7 mm, and 14.0 mm against S. aureus, S. typhi, and C. albicans, respectively. The MIC value of S. garrettiana against S. aureus was 125 µg/mL while the MIC in S. typhi and C. albicans greater than 2000 µg/mL. To conclude, S. garrettiana extract showed higher sensitivity of antibacterial activity against gram-positive bacteria than gram-negative bacteria. In addition, the plant extracts also possessed antifungal activity. Therefore, further investigation to confirm the mechanism of action of antimicrobial activity in S. garrettiana extract should be performed to identify the target of the antimicrobial action.Keywords: antimicrobial activity, Candida albicans, Salmonella typhi, Senna garrettiana, Staphylococcus aureus
Procedia PDF Downloads 197946 Evaluation of the Role of Bacteria-Derived Flavins as Plant Growth Promoting Molecules
Authors: Nivethika Ajeethan, Lord Abbey, Svetlana Yurge
Abstract:
Riboflavin is a water-soluble vitamin and the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide. Flavins (FLs) are bioactive molecules that have a beneficial effect on plant growth and development. Sinorhizobium meliloti strain 1021 is an α-proteobacterium that forms agronomically important N₂-fixing symbiosis with Medicago plants and secretes a considerable amount of FLs (FL⁺ strain). This strain was also implicated in plant growth promotion in its association with non-legume host plants. However, the mechanism of this plant growth promotion is not well understood. In this study, we evaluated the growth and development of tomato plants inoculated with S. meliloti 1021 and its mutant (FL⁻ strain) with limited ability to secrete FLs. Our preliminary experiments indicated that inoculation with FL⁺ strain significantly increased seedlings' root and shoot length and surface area compared to those of plants inoculated with FL⁻ strain. For example, the root lengths of 9-day old seedlings inoculated with FL⁺ strain were 35% longer than seedlings inoculated with the mutant. Proteomic approaches combined with the analysis of plant physiological responses such as growth and photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content will be used to evaluate the host-plant response to bacteria-derived FLs.Keywords: flavin, plant growth promotion, riboflavin, Sinorhizobium meliloti
Procedia PDF Downloads 154945 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae
Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres
Abstract:
Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling
Procedia PDF Downloads 149944 Preparation and Evaluation of Herbal Extracts for Washing of Vegetables and Fruits
Authors: Pareshkumar Umedbhai Patel
Abstract:
Variety of microbes were isolated from surface of fruit and vegetables to get idea about normal flora of their surface. The process of isolation of microbes involved use of sterilized cotton swabs to wipe the surface of the samples. For isolation of Bacteria, yeast and fungi microbiological media used were nutrient agar medium, GYE agar medium and MRBA agar medium respectively. The microscopical and macroscopical characteristics of all the isolates were studied. Different plants with known antimicrobial activity were selected for obtaining samples for extraction e.g. Ficus (Ficus religosa) stem, Amla (Phyllanthus emblica) fruit, Tulsi (Ocimum tenuiflorum) leaves and Lemon grass (Cymbopogon citratus) oil. Antimicrobial activity of these samples was tested initially against known bacteria followed by study against microbes isolated from surface of vegetables and fruits. During the studies carried out throughout the work, lemongrass oil and Amla extract were found superior. Lemongrass oil and Amla extract respectively inhibited growth of 65% and 42% microbes isolated from fruit and vegetable surfaces. Rest two studied plant extracts showed only 11% of inhibition against the studied isolates. The results of isolate inhibition show the antibacterial effect of lemongrass oil better than the rest of the studied plant extracts.Keywords: herbal extracts, vegetables, fruits, antimicrobial activity
Procedia PDF Downloads 167943 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment
Authors: Michael Radwan Omary
Abstract:
Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.Keywords: catalysis, bio electro interactions, water desalination, weak-interactions
Procedia PDF Downloads 69942 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia
Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami
Abstract:
Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia
Procedia PDF Downloads 347941 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery
Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder
Abstract:
The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands
Procedia PDF Downloads 389940 Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia
Authors: G. A. Gevorgyan, A. S. Mamyan, L. G. Stepanyan, L. R. Hambaryan
Abstract:
Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health.Keywords: algal bloom, bacterioplankton, phytoplankton, Hrazdan river, Yerevanyan lich reservoir
Procedia PDF Downloads 276939 The Effect of the Earthworm (Lumbricus rubellus) as the Source of Protein Feed and Pathogen Antibacterial for Broiler
Authors: Waode Nurmayani, Nikmatul Riswanda
Abstract:
Broilers are chickens which are kept with the most efficient time and hoped get a good body weight. All things are done, for example with the improvement of feed and use antibiotics. Feed cost is the most cost to be spent. Nearly 80% of the cost is spent just for buy feed. Earthworm (Lumbricus rubellus) is a good choice to reduce the cost of feed protein source. The Earthworm has a high crude protein content of about 48.5%-61.9%, rich with proline amino acid about 15% of the 62 amino acids. Not only about protein, this earthworm also has a role in disease prevention. Prevention of disease in livestock usual with use feed supplement. Earthworm (Lumbricus rubellus) is one of the natural materials used as feed. In addition, several types of earthworms that have been known to contain active substances about antibacterial pathogens namely Lumbricus rubellus. The earthworm could be used as an antibiotic because it contain the antibody of Lumbricine active substance. So that, this animal feed from Lumbricus rubellus could improve the performance of broilers. Bioactive of anti-bacterial is called Lumbricine able to inhibit the growth of pathogenic bacteria in the intestinal wall so that the population of pathogenic bacteria is reduced. The method of write in this scientific writing is divided into 3 techniques, namely data completion, data analysis, and thinking pan from various literature about earthworm (Lumbricus rubellus) as broiler feed. It is expected that innovation of feed material of earthworm (Lumbricus rubellus) could reduce the cost of protein feed and the use of chemical antibiotics.Keywords: earthworm, broiler, protein, antibiotic
Procedia PDF Downloads 158938 Corrosion Interaction Between Steel and Acid Mine Drainage: Use of AI Based on Fuzzy Logic
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured, and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics.Keywords: acid mine drainage, artificial intelligence, carbon steel, corrosion, fuzzy logic
Procedia PDF Downloads 12937 Mothwash Formulation of Moringa Leaf (Moringa Oleifera) and Its Activity as an Antibacterial for Streptococcus Mutans
Authors: Amalia Dwi Berliyanti Amel
Abstract:
Streptococcus mutants bacteria are bacteria that are believed to be the cause of the growth of dental plaque which can further adversely affect dental caries if left unchecked. Previous research has shown that Moringa leaf extract can slow down the growth rate of this bacterium. This study aims to make the best formulation of mouthwash with the active ingredient of Moringa leaf extract based on its antibacterial and organoleptic test results. Nine mouthwash variations were carried out with two factors and three levels, namely a comparison of the concentration of sorbitol (A) with three levels namely 15% (A1), 20% (A2), and 25% (A3), and peppermint added (B) with three levels, namely 0.2% (B1), 0.25% (B2), and 0.3% (B3). The test parameters performed as the determination of the best mouthwash are based on physicochemical properties which include pH and viscosity as well as organoleptic test results which include color, viscosity, aroma, taste, sensation in the mouth, and general appearance. The results showed that the bright zone as a test for the antibacterial activity of Streptococcus mutants began to be seen at a concentration of 5%. Moringa leaf mouthwash formulation has a pH value between 6 - 7, with a control of 6. Whereas the mucosa leaf mouthwash vascularity produced between 1.1 - 1.7 cP with a control of 1.1 cP. Moringa leaf mouthwash and control have the same total number of microbes, namely 0 colonies / mL. Based on organoleptic tests performed with 20 panelists, it was shown that the best mouthwash formulation was formulation A1B3 with sorbitol composition 15% and peppermint 0.3%.Keywords: antibasteria, formula, moringa leaf, mouthwash
Procedia PDF Downloads 155936 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria
Procedia PDF Downloads 257935 Literature Review on the Antibacterial Effects of Salvia officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Pr. Chelghoum
Abstract:
Introduction: The widespread production and consumption of antibiotics have raised significant concerns due to various adverse effects and the development of bacterial resistance. This increasing resistance to currently available antibiotics necessitates the search for new antibacterial agents. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. This study aims to provide an overview of the antibacterial effects of Salvia officinalis (sage), a plant native to the Middle East and Mediterranean regions. Materials and Methods: This review was conducted by searching studies in databases such as PubMed, Scopus, JSTOR, and SpringerLink. The search terms were “Salvia officinalis L.” and “antibacterial effects.” Only studies that met our inclusion criteria (in English, focusing on the antibacterial effects of Salvia officinalis L., and primarily dated from 2012 to 2023) were considered for further review. Results and Discussion: The initial search strategy identified approximately 78 references, of which only 13 articles were included in this review. The synthesis of these articles revealed that multiple data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis demands further studies on other useful and unknown properties of this multipurpose plant.Keywords: salvia officinalis, literature review, antibacterial., botany
Procedia PDF Downloads 33934 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand
Authors: Natapol Pumipuntu
Abstract:
Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST
Procedia PDF Downloads 151933 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas
Procedia PDF Downloads 408932 Algal/Bacterial Membrane Bioreactor for Bioremediation of Chemical Industrial Wastewater Containing 1,4 Dioxane
Authors: Ahmed Tawfik
Abstract:
Oxidation of 1,4 dioxane produces metabolites by-products involving glycolaldehyde and acids that have geno- and cytotoxicity impact on microbial degradation. Thereby, the incorporation of algae with bacteria in the treatment system would eliminate and overcome the accumulation of metabolites that are utilized as a carbon source for the build-up of biomass. Therefore, the aim of the present study is to assess the potential of algae/bacteria-based membrane bioreactor (AB-MBR) for biodegradation of 1,4 dioxane-rich wastewater at a high imposed loading rate. Three identical reactors, i.e., AB-MBR1, AB-MBR2, and AB-MBR3, were operated in parallel at 1,4 dioxane loading rates of 641.7, 320.9, and 160.4 mg/L. d., and HRTs of 6.0, 12 and 24 h. respectively. The AB-MBR1 achieved 1,4 dioxane removal rate of 263.7 mg/L.d., where the residual value in the treated effluent amounted to 94.4±22.9 mg/L. Reducing the 1,4 dioxane loading rate (LR) to 320.9 mg/L.d in the AB-MBR2 maximized the removal rate efficiency of 265.9 mg/L.d., with a removal efficiency of 82.8±3.2%. The minimum value of 1,4 dioxane of 17.3±1.8 mg/L in the treated effluent of AB-MBR3 was obtained at an HRT of 24.0 h and loading rate of 160.4 mg/L.d. The mechanism of 1,4 dioxane degradation in AB-MBR was a combination of volatilization (8.03±0.6%), UV oxidation (14.1±0.9%), microbial biodegradation (49.1±3.9%) and absorption/uptake and assimilation by algae (28.8±2.%). Further, the Thioclava, Afipia, and Mycobacterium genera oxidized and produced the required enzymes for hydrolysis and cleavage of the dioxane ring into 2-hydroxy-1,4 dioxane. Moreover, the fungi, i.e., Basidiomycota and Cryptomycota, played a big role in the degradation of the 1,4 dioxane into 2-hydroxy-1,4 dioxane. Xanthobacter and Mesorhizobium were involved in the metabolism process by secreting alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and glycolate oxidase. Bacteria and fungi produced dehydrogenase (DH) for the transformation of 2-hydroxy-1,4 dioxane into 2-hydroxy-ethoxyacetaldehyde. The latter is converted into Ethylene glycol by Aldehyde hydrogenase (ALDH). Ethylene glycol is oxidized into acids using Alcohol hydrogenase (ADH). The Diatomea, Chlorophyta, and Streptophyta utilize the metabolites for biomass assimilation and produce the required oxygen for further oxidation of the dioxane and its metabolites by-products of bacteria and fungi. The major portion of metabolites (ethylene glycol, glycolic acid, and oxalic acid were removed due to uptake and absorption by algae (43±4.3%), followed by adsorption (18.4±0.9%). The volatilization and UV oxidation contribution for the degradation of metabolites were 8.7±0.7% and 12.3±0.8%, respectively. The capabilities of genera Defluviimonas, Thioclava, Luteolibacter, and Afipia. The genera of Defluviimonas, Thioclava, Luteolibacter, and Mycobacterium were grown under a high 1,4 dioxane LR of 641.7 mg/L.d. The Chlorophyta (4.1-43.6%), Streptophyta (2.5-21.7%), and Diatomea (0.8-1.4%) phyla were dominant for degradation of 1,4 dioxane. The results of this study strongly demonstrated that the bioremediation and bioaugmentation process can safely remove 1,4 dioxane from industrial wastewater while minimizing environmental concerns and reducing economic costs.Keywords: wastewater, membrane bioreactor, bacterial community, algal community
Procedia PDF Downloads 44931 Phytochemical Screening and Antimicrobial Activity of Limeum indicum and Euphorbia granulata
Authors: Noshaba Dilbar, Hina Ashraf
Abstract:
Medicinal plants are considered as rich source of ingredients which can be used in drug development and synthesis. Moreover, these plants play a vital role in the development of human culture of using ayurvedic medicines around the whole world. Among all plants, dessert plants are being proved as effective source of ayurvedic medicines and remedy against many diseases. Considering the fact, two plant species Limium indicum and Euphorbia granulata were taken from Cholistan dessert of Bahawalpur, Pakistan. Firstly, phytochemical screening was done by making dry and fresh plant extracts in five different solvents i.e Petroleum ether, benzene, chloroform, ethanol and methanol. Standard confirmation tests for all compounds were applied for analysis. Results revealed the presence of high range of bioactive compounds such as alakaloids, terpenoids, glycosides, steroids, flavonoids, saponins, phytosterols, oxalic acid, anthocyanin and quinone in both plants. Best results were obtained by methanolic, chloroform and petroleum ether extracts and methanolic, ethanolic and benzene extracts of Limium indicum and Euphorbia granulate respectively. Considering the results, methanolic extracts of both plants were further analysed for antibacterial activity. Plants were analysed against four pathogens including Escherchia coli, Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aruginosa using disc diffusion method. Limium indicum showed highly significant activity against all pathogens while Euphorbia granulata showed significant activity against Klebsiella pneumonia and Proteus vulgaris but lesser against Escherchia coli and Pseudomonas aruginosa. MIC of extracts against each positive bacterium was calculated and recorded. Present plants can be considered for making useful drugs but further studies are needed to isolate active agents from plant extracts for drug development.Keywords: antibacterial activity, Euphorbia granulata, Limium indicum, medicinal plants, phytochemical screening
Procedia PDF Downloads 119