Search results for: resource management algorithm
5242 Cultural Identity and Differentiation: Linguistic Landscape in Multilingual Tourist Community of Hangzhou
Authors: Qianqian Chen
Abstract:
The article intends to design a new research perspective on a linguistic landscape with the research background on multilingual urban tourism by analyzing the collected data, including a number of surveys on current urban tourism and the possibility of internationalization. The language usage analysis focuses on terms of English, Japanese and Spanish, which is based on the previous investigations. The analysis highlights the fact that contemporary tourism management and planning emphasizes cultural memories and heritage, and the combination between culture and tourism recalls the importance of "re-humanity" inhuman activities.Keywords: multilingualism, culture, linguistic landscape, Hangzhou
Procedia PDF Downloads 1525241 Method to Calculate the Added Value in Supply Chains of Electric Power Meters
Authors: Andrey Vinajera-Zamora, Norge Coello-Machado, Elke Glistau
Abstract:
The objective of this research is calculate the added value in operations of electric power meters (EPM) supply chains, specifically the EPM of 220v. The tool used is composed by six steps allowing at same time the identification of calibration of EPM as the bottleneck operation according the net added value being at same time the process of higher added value. On the other hand, this methodology allows calculate the amount of money to buy the raw material. The main conclusions are related to the analyze ‘s way and calculating of added value in supply chain integrated by the echelons procurement, production and distribution or any of these.Keywords: economic value added, supply chain management, value chain, bottleneck detection
Procedia PDF Downloads 2955240 Hyperthyroidism in a Private Medical Services Center, Addis Ababa: A 5-Year Experience
Authors: Ersumo Tessema, Bogale Girmaye Tamrat, Mohammed Burka
Abstract:
Background: Hyperthyroidism is a common thyroid disorder especially in women and characterized by increased thyroid hormone synthesis and secretion. The disorder manifests predominantly as Graves’ disease in iodine-sufficient areas and has increasing prevalence in iodine-deficient countries in patients with nodular thyroid disease and following iodine fortification. In Ethiopia, the magnitude of the disorder is unknown and, in Africa, due to scarcity of resources, its management remains suboptimal. Objective: The aim of this study was to analyze the pattern and management of patients with hyperthyroidism at the United Vision Medical Services Center, Addis Ababa between August 30, 2013, and February 1, 2018. Patients and methods: The study was a retrospective analysis of medical records of all patients with hyperthyroidism at the United Vision Private Medical Services Center, Addis Ababa. A questionnaire was filled out; the collected data entered into a computer and statistically analyzed using the SPSS package. The results were tabulated and discussed with literature review. Results: A total of 589 patients were included in this study. The median age was 40 years, and the male to female ratio was 1.0:7.9. Most patients (93%) presented with goiter and the associated features of toxic goiter except weight loss, sweating and tachycardia were uncommon. Majority of patients presented more than two years after the onset of their presenting symptoms. The most common physical finding (91%), as well as diagnosis, was toxic nodular goiter. The most frequent (83%) derangement in the thyroid function tests was a low thyroid-stimulating hormone, and the most commonly (94%) used antithyroid drug was a propylthiouracil. The most common (96%) surgical procedure in 213 patients was a near-total thyroidectomy with a postoperative course without incident in 92% of all the patients. Conclusion: The incidence and prevalence of hyperthyroidism are apparently on the increase in Addis Ababa, which may be related to the existing severe iodine-deficiency and or the salt iodation program (iodine-induced hyperthyroidism). Hyperthyroidism predominantly affects women and, in surgical services, toxic nodular goiter is more common than diffuse goiter, and the treatment of choice in experienced hands is a near-total thyroidectomy.Keywords: Ethiopia, grave’s disease, hyperthyroidism, toxic nodular goiter
Procedia PDF Downloads 1765239 CMMI Key Process Areas and FDD Practices
Authors: Rituraj Deka, Nomi Baruah
Abstract:
The development of information technology during the past few years resulted in designing of more and more complex software. The outsourcing of software development makes a higher requirement for the management of software development project. Various software enterprises follow various paths in their pursuit of excellence, applying various principles, methods and techniques along the way. The new research is proving that CMMI and Agile methodologies can benefit from using both methods within organizations with the potential to dramatically improve business performance. The paper describes a mapping between CMMI key process areas (KPAs) and Feature-Driven Development (FDD) communication perspective, so as to increase the understanding of how improvements can be made in the software development process.Keywords: Agile, CMMI, FDD, KPAs
Procedia PDF Downloads 4595238 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 5955237 Regulatory Frameworks and Bank Failure Prevention in South Africa: Assessing Effectiveness and Enhancing Resilience
Authors: Princess Ncube
Abstract:
In the context of South Africa's banking sector, the prevention of bank failures is of paramount importance to ensure financial stability and economic growth. This paper focuses on the role of regulatory frameworks in safeguarding the resilience of South African banks and mitigating the risks of failures. It aims to assess the effectiveness of existing regulatory measures and proposes strategies to enhance the resilience of financial institutions in the country. The paper begins by examining the specific regulatory frameworks in place in South Africa, including capital adequacy requirements, stress testing methodologies, risk management guidelines, and supervisory practices. It delves into the evolution of these measures in response to lessons learned from past financial crises and their relevance in the unique South African banking landscape. Drawing on empirical evidence and case studies specific to South Africa, this paper evaluates the effectiveness of regulatory frameworks in preventing bank failures within the country. It analyses the impact of these frameworks on crucial aspects such as early detection of distress signals, improvements in risk management practices, and advancements in corporate governance within South African financial institutions. Additionally, it explores the interplay between regulatory frameworks and the specific economic environment of South Africa, including the role of macroprudential policies in preventing systemic risks. Based on the assessment, this paper proposes recommendations to strengthen regulatory frameworks and enhance their effectiveness in bank failure prevention in South Africa. It explores avenues for refining existing regulations to align capital requirements with the risk profiles of South African banks, enhancing stress testing methodologies to capture specific vulnerabilities, and fostering better coordination among regulatory authorities within the country. Furthermore, it examines the potential benefits of adopting innovative approaches, such as leveraging technology and data analytics, to improve risk assessment and supervision in the South African banking sector.Keywords: banks, resolution, liquidity, regulation
Procedia PDF Downloads 875236 Competitiveness and Pricing Policy Assessment for Resilience Surface Access System at Airports
Authors: Dimitrios J. Dimitriou
Abstract:
Considering a worldwide tendency, air transports are growing very fast and many changes have taken place in planning, management and decision making process. Given the complexity of airport operation, the best use of existing capacity is the key driver of efficiency and productivity. This paper deals with the evaluation framework for the ground access at airports, by using a set of mode choice indicators providing key messages towards airport’s ground access performance. The application presents results for a sample of 12 European airports, illustrating recommendations to define policy and improve service for the air transport access chain.Keywords: airport ground access, air transport chain, airport access performance, airport policy
Procedia PDF Downloads 3715235 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu
Abstract:
The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.Keywords: construction contractors, health and well-being, environmental quality, risk management
Procedia PDF Downloads 1325234 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1575233 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles
Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan
Abstract:
In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.Keywords: automobile suspension, MATLAB, control system, PID, PSO
Procedia PDF Downloads 2945232 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment
Procedia PDF Downloads 2005231 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 955230 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 895229 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment
Authors: Neda Orak, Mostafa Zarei
Abstract:
Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park
Procedia PDF Downloads 2935228 Mean Reversion in Stock Prices: Evidence from Karachi Stock Exchange
Authors: Tabassum Riaz
Abstract:
This study provides a complete examination of the stock prices behavior in the Karachi stock exchange. It examines that whether Karachi stock exchange can be described as mean reversion or not. For this purpose daily, weekly and monthly index data from Karachi stock exchange ranging from period July 1, 1997 to July 2, 2011 was taken. After employing the Multiple variance ratio and unit root tests it is concluded that stock market follow mean reversion behavior and hence have reverting trend which opens the door for the active invest management. Thus technical analysis may be help to identify the potential areas for value creation.Keywords: mean reversion, random walk, technical analysis, Karachi stock exchange
Procedia PDF Downloads 4325227 Crop Breeding for Low Input Farming Systems and Appropriate Breeding Strategies
Authors: Baye Berihun Getahun, Mulugeta Atnaf Tiruneh, Richard G. F. Visser
Abstract:
Resource-poor farmers practice low-input farming systems, and yet, most breeding programs give less attention to this huge farming system, which serves as a source of food and income for several people in developing countries. The high-input conventional breeding system appears to have failed to adequately meet the needs and requirements of 'difficult' environments operating under this system. Moreover, the unavailability of resources for crop production is getting for their peaks, the environment is maltreated by excessive use of agrochemicals, crop productivity reaches its plateau stage, particularly in the developed nations, the world population is increasing, and food shortage sustained to persist for poor societies. In various parts of the world, genetic gain at the farmers' level remains low which could be associated with low adoption of crop varieties, which have been developed under high input systems. Farmers usually use their local varieties and apply minimum inputs as a risk-avoiding and cost-minimizing strategy. This evidence indicates that the conventional high-input plant breeding system has failed to feed the world population, and the world is moving further away from the United Nations' goals of ending hunger, food insecurity, and malnutrition. In this review, we discussed the rationality of focused breeding programs for low-input farming systems and, the technical aspect of crop breeding that accommodates future food needs and its significance for developing countries in the decreasing scenario of resources required for crop production. To this end, the application of exotic introgression techniques like polyploidization, pan-genomics, comparative genomics, and De novo domestication as a pre-breeding technique has been discussed in the review to exploit the untapped genetic diversity of the crop wild relatives (CWRs). Desired recombinants developed at the pre-breeding stage are exploited through appropriate breeding approaches such as evolutionary plant breeding (EPB), rhizosphere-related traits breeding, and participatory plant breeding approaches. Populations advanced through evolutionary breeding like composite cross populations (CCPs) and rhizosphere-associated traits breeding approach that provides opportunities for improving abiotic and biotic soil stress, nutrient acquisition capacity, and crop microbe interaction in improved varieties have been reviewed. Overall, we conclude that low input farming system is a huge farming system that requires distinctive breeding approaches, and the exotic pre-breeding introgression techniques and the appropriate breeding approaches which deploy the skills and knowledge of both breeders and farmers are vital to develop heterogeneous landrace populations, which are effective for farmers practicing low input farming across the world.Keywords: low input farming, evolutionary plant breeding, composite cross population, participatory plant breeding
Procedia PDF Downloads 525226 Reviewing Performance Assessment Frameworks for Urban Sanitation Services in India
Authors: Gaurav Vaidya, N. R. Mandal
Abstract:
UN Summit, 2000 had resolved to provide access to sanitation to whole humanity as part of ‘Millennium Development Goals -2015’. However, more than one third of world’s population still did not have the access to basic sanitation facilities by 2015. Therefore, it will be a gigantic challenge to achieve goal-6 of ‘UN Sustainable Development Goal’ to ensure availability and sustainable management of sanitation for all by the year 2030. Countries attempt to find out own ways of meeting this challenge of providing access to safe sanitation and as part of monitoring the actions have prepared varied types of ‘performance assessment frameworks (PAF)’. India introduced Service Level Benchmarking (SLB) in 2010 to set targets and achieve the goals of NUSP. Further, a method of reviewing performance was introduced as ‘Swachh Sarvekshan’ (Cleanliness Surveys) in 2016 and in 2017 guidelines for the same was revised. This study, as a first step, reviews the documents in use in India with a conclusion that the frameworks adopted are based on target setting, financial allocation and performance in achieving the targets set. However, it does not focus upon sanitation needs holistically i.e., areas and aspects not targeted through projects are not covered in the performance assessment. In this context, as a second step, this study reviews literature available on performance assessment frameworks for urban sanitation in selected other countries and compares the same with that in India. The outcome of the comparative review resulted in identification of unaddressed aspects as well as inadequacy of parameters in Indian context. Thirdly, in an attempt to restructure the performance assessment process and develop an index in urban sanitation, researches done in other urban services such as health and education were studied focusing on methods of measuring under-performance. As a fourth step, a tentative modified framework is suggested with the help of understanding drawn from above for urban sanitation using stages of Urban Sanitation Service Chain Management (SSCM) and modified set of parameters drawn from the literature review in the first and second steps. This paper reviews existing literature on SSCM procedures, Performance Index in sanitation and other urban services and identifies a tentative list of parameters and a framework for measuring under-performance in sanitation services. This may aid in preparation of a Service Delivery Under-performance Index (SDUI) in future.Keywords: assessment, performance, sanitation, services
Procedia PDF Downloads 1475225 Fuel Cells Not Only for Cars: Technological Development in Railways
Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz
Abstract:
Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.Keywords: railway, hydrogen, fuel cells, hybrid vehicles
Procedia PDF Downloads 1895224 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 3545223 Educational Institutional Approach for Livelihood Improvement and Sustainable Development
Authors: William Kerua
Abstract:
The PNG University of Technology (Unitech) has mandatory access to teaching, research and extension education. Given such function, the Agriculture Department has established the ‘South Pacific Institute of Sustainable Agriculture and Rural Development (SPISARD)’ in 2004. SPISARD is established as a vehicle to improve farming systems practiced in selected villages by undertaking pluralistic extension method through ‘Educational Institutional Approach’. Unlike other models, SPISARD’s educational institutional approach stresses on improving the whole farming systems practiced in a holistic manner and has a two-fold focus. The first is to understand the farming communities and improve the productivity of the farming systems in a sustainable way to increase income, improve nutrition and food security as well as livelihood enhancement trainings. The second is to enrich the Department’s curriculum through teaching, research, extension and getting inputs from farming community. SPISARD has established number of model villages in various provinces in Papua New Guinea (PNG) and with many positive outcome and success stories. Adaption of ‘educational institutional approach’ thus binds research, extension and training into one package with the use of students and academic staff through model village establishment in delivering development and extension to communities. This centre (SPISARD) coordinates the activities of the model village programs and linkages. The key to the development of the farming systems is establishing and coordinating linkages, collaboration, and developing partnerships both within and external institutions, organizations and agencies. SPISARD has a six-point step strategy for the development of sustainable agriculture and rural development. These steps are (i) establish contact and identify model villages, (ii) development of model village resource centres for research and trainings, (iii) conduct baseline surveys to identify problems/needs of model villages, (iv) development of solution strategies, (v) implementation and (vi) evaluation of impact of solution programs. SPISARD envisages that the farming systems practiced being improved if the villages can be made the centre of SPISARD activities. Therefore, SPISARD has developed a model village approach to channel rural development. The model village when established become the conduit points where teaching, training, research, and technology transfer takes place. This approach is again different and unique to the existing ones, in that, the development process take place in the farmers’ environment with immediate ‘real time’ feedback mechanisms based on the farmers’ perspective and satisfaction. So far, we have developed 14 model villages and have conducted 75 trainings in 21 different areas/topics in 8 provinces to a total of 2,832 participants of both sex. The aim of these trainings is to directly participate with farmers in the pursuit to improving their farming systems to increase productivity, income and to secure food security and nutrition, thus to improve their livelihood.Keywords: development, educational institutional approach, livelihood improvement, sustainable agriculture
Procedia PDF Downloads 1545222 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows
Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican
Abstract:
This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.Keywords: laboratory-process, optimization, pathology, computer simulation, workflow
Procedia PDF Downloads 2865221 Software Development and Team Diversity
Authors: J. Congalton, K. Logan, B. Crump
Abstract:
Software is a critical aspect of modern life. However it is costly to develop and industry initiatives have focused on reducing costs and improving the productivity. Increasing, software is being developed in teams, and with greater globalization and migration, the teams are becoming more ethnically diverse. This study investigated whether diversity in terms of ethnicity impacted on the productivity of software development. Project managers of software development teams were interviewed. The study found that while some issues did exist due to language problems, when project managers created an environment of trust and friendliness, diversity made a positive contribution to productivity.Keywords: diversity, project management, software development, team work
Procedia PDF Downloads 3725220 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries
Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem
Abstract:
This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 4485219 Waste Management Option for Bioplastics Alongside Conventional Plastics
Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy
Abstract:
Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.Keywords: bioplastics, contamination, recycling, waste management
Procedia PDF Downloads 2255218 The Role and Challenges of Social Workers in Child Protection: The Case of Indonesia
Authors: B. Rusyidi
Abstract:
Since 2009, the Indonesian Ministry of Social Affairs has been implementing Program Kesejahteraan Sosial Anak (PKSA) (Child Welfare Program) a conditional cash transfer program that targets neglected children, children with disabilities, street children, children in conflict with the law, and children in need of special protection, all from poor households. PKSA integrates three elements: Transfer of cash, care and social services through social workers, and institutional childcare assistance. This qualitative study analyzed the roles and the challenges of social workers in implementing PKSA and lays out recommendations to inform policy changes. Data were collected in late 2014 from national and local government and non-government child welfare agencies, social workers, and childcare institution representatives through interviews and Focused Group Discussions (FGDs). Field work took place in six districts in the provinces of Jakarta, Central Java and South Sulawesi. The study found that the social workers’ role was significant in facilitating cash transfer, providing education and guidance, and linking children and families to basic social services. This improved utilization of basic social services enhanced children and families’ behaviors and contributed to the well being of the children. However, only a small number of childcare institutions have social workers, leaving many children and families without care and social service linkages, depriving them of rehabilitative components to help them regain their social functions. Some social workers reported their struggles with heavy workloads, lack of professional competencies and training, limited job security, and inadequate professional acknowledgment from other professions. Parts of those challenges were due to the centralized nature of the program and the lack of shared vision and commitment about the child protection system among related government agencies both at the national and local levels. The study highlights the necessity to implement an integrated child protection system, decentralize the PKSA program, and increase the number, competence, case management, and management and monitoring of social workers. The most recent progress of the program and its impacts on social workers are also discussed.Keywords: child protection, conditional cash transfer, program decentralization, social worker, working conditions
Procedia PDF Downloads 2185217 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 1465216 From Talk to Action-Tackling Africa’s Pollution and Climate Change Problem
Authors: Ngabirano Levis
Abstract:
One of Africa’s major environmental challenges remains air pollution. In 2017, UNICEF estimated over 400,000 children in Africa died as a result of indoor pollution, while 350 million children remain exposed to the risks of indoor pollution due to the use of biomass and burning of wood for cooking. Over time, indeed, the major causes of mortality across Africa are shifting from the unsafe water, poor sanitation, and malnutrition to the ambient and household indoor pollution, and greenhouse gas (GHG) emissions remain a key factor in this. In addition, studies by the OECD estimated that the economic cost of premature deaths due to Ambient Particulate Matter Pollution (APMP) and Household Air Pollution across Africa in 2013 was about 215 Billion US Dollars and US 232 Billion US Dollars, respectively. This is not only a huge cost for a continent where over 41% of the Sub-Saharan population lives on less than 1.9 US Dollars a day but also makes the people extremely vulnerable to the negative climate change and environmental degradation effects. Such impacts have led to extended droughts, flooding, health complications, and reduced crop yields hence food insecurity. Climate change, therefore, poses a threat to global targets like poverty reduction, health, and famine. Despite efforts towards mitigation, air contributors like carbon dioxide emissions are on a generally upward trajectory across Africa. In Egypt, for instance, emission levels had increased by over 141% in 2010 from the 1990 baseline. Efforts like the climate change adaptation and mitigation financing have also hit obstacles on the continent. The International Community and developed nations stress that Africa still faces challenges of limited human, institutional and financial systems capable of attracting climate funding from these developed economies. By using the qualitative multi-case study method supplemented by interviews of key actors and comprehensive textual analysis of relevant literature, this paper dissects the key emissions and air pollutant sources, their impact on the well-being of the African people, and puts forward suggestions as well as a remedial mechanism to these challenges. The findings reveal that whereas climate change mitigation plans appear comprehensive and good on paper for many African countries like Uganda; the lingering political interference, limited research guided planning, lack of population engagement, irrational resource allocation, and limited system and personnel capacity has largely impeded the realization of the set targets. Recommendations have been put forward to address the above climate change impacts that threaten the food security, health, and livelihoods of the people on the continent.Keywords: Africa, air pollution, climate change, mitigation, emissions, effective planning, institutional strengthening
Procedia PDF Downloads 835215 Digital Twins: Towards an Overarching Framework for the Built Environment
Authors: Astrid Bagireanu, Julio Bros-Williamson, Mila Duncheva, John Currie
Abstract:
Digital Twins (DTs) have entered the built environment from more established industries like aviation and manufacturing, although there has never been a common goal for utilising DTs at scale. Defined as the cyber-physical integration of data between an asset and its virtual counterpart, DT has been identified in literature from an operational standpoint – in addition to monitoring the performance of a built asset. However, this has never been translated into how DTs should be implemented into a project and what responsibilities each project stakeholder holds in the realisation of a DT. What is needed is an approach to translate these requirements into actionable DT dimensions. This paper presents a foundation for an overarching framework specific to the built environment. For the purposes of this research, the UK widely used the Royal Institute of British Architects (RIBA) Plan of Work from 2020 is used as a basis for itemising project stages. The RIBA Plan of Work consists of eight stages designed to inform on the definition, briefing, design, coordination, construction, handover, and use of a built asset. Similar project stages are utilised in other countries; therefore, the recommendations from the interviews presented in this paper are applicable internationally. Simultaneously, there is not a single mainstream software resource that leverages DT abilities. This ambiguity meets an unparalleled ambition from governments and industries worldwide to achieve a national grid of interconnected DTs. For the construction industry to access these benefits, it necessitates a defined starting point. This research aims to provide a comprehensive understanding of the potential applications and ramifications of DT in the context of the built environment. This paper is an integral part of a larger research aimed at developing a conceptual framework for the Architecture, Engineering, and Construction (AEC) sector following a conventional project timeline. Therefore, this paper plays a pivotal role in providing practical insights and a tangible foundation for developing a stage-by-stage approach to assimilate the potential of DT within the built environment. First, the research focuses on a review of relevant literature, albeit acknowledging the inherent constraint of limited sources available. Secondly, a qualitative study compiling the views of 14 DT experts is presented, concluding with an inductive analysis of the interview findings - ultimately highlighting the barriers and strengths of DT in the context of framework development. As parallel developments aim to progress net-zero-centred design and improve project efficiencies across the built environment, the limited resources available to support DTs should be leveraged to propel the industry to reach its digitalisation era, in which AEC stakeholders have a fundamental role in understanding this, from the earliest stages of a project.Keywords: digital twins, decision-making, design, net-zero, built environment
Procedia PDF Downloads 1235214 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5835213 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 168