Search results for: cutting conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10401

Search results for: cutting conditions

1191 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry

Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka

Abstract:

The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.

Keywords: Antioxidant, free radicals, herbs, phenolic, spices

Procedia PDF Downloads 256
1190 A Pathway to Sustainable Agriculture through Protection and Propagation of Indigenous Livestock Breeds of Pakistan-Cholistani Cattle as a Case Study

Authors: Umer Farooq

Abstract:

The present work is being presented with a general aim of highlighting the role of protection/propagation of indigenous breeds of livestock in an area as a sustainable tool for poverty alleviation. Specifically, the aim is to introduce a formerly neglected Cholistani breed of cattle being reared by the Cholistani desert nomads of Pakistan. The said work will present a detaile account of research work conducted during the last five years by the author. Furthermore, it will present the performance (productive and reproductive traits) of this breed as being reared under various nomadic systems of the desert. Results will be deducted on the basis of the research work conducted on Cholistani cattle and keeping abreast the latest reforms being provided by the Food and Agriculture Organization (FAO) and World Initiative to Support Pastoralism (WISP) of the UN. The timely attention towards the protection and propagation of this neglected breed of cattle will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems such as Pakistan. The 15 recognized indigenous breeds of cattle constitute 43% of the total livestock population in Pakistan and belong to Zebu cattle. These precious breeds are currently under threat and might disappear even before proper documentation until and unless streamlined efforts are diverted towards them. This horrific state is due to many factors such as epidemic diseases, urbanization, indiscriminate crossing with native stock, misdirected cross breeding with exotic stock/semen, inclined livestock systems from extensive (subsistence) to intensive (commercial), lack of valuation of local breeds, decreasing natural resources, environmental degradation and global warming. Hefty work has been documented on many aspects of Sahiwal and Red Sindhi breeds of cattle in their respective local climates which have rightly gained them an international fame as being the vital tropical milk breeds of Pakistan. However, many other indigenous livestock breeds such as Cholistani cattle being reared under pastoral systems of Cholistan are yet unexplored. The productive and reproductive traits under their local climatic conditions need to be studied and the future researches may be streamlined to manipulate their indigenous potential. The timely attention will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems.

Keywords: Cholistan desert, Pakistan, indigenous cattle, Sahiwal cattle, pastoralism

Procedia PDF Downloads 556
1189 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 102
1188 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 296
1187 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 347
1186 Psychological Distress and Associated Factors among Patients Attending Orthopedic Unit of at Dilla University Referral Hospital in Ethiopia, 2022

Authors: Chalachew Kassaw, Henok Ababu, Bethelhem Sileshy, Lulu Abebe, Birhanie Mekuriaw

Abstract:

Background: Psychological discomfort is a state of emotional distress caused by everyday stressors and obligations that are difficult to manage. Orthopedic trauma has a wide range of effects on survivors' physical health, as well as a variety of mental health concerns that impede recovery. Psychiatric and behavioral conditions are 3-5 times more common in people who have undergone physical trauma, and they are a predictor of poor outcomes. Despite the above facts, there is a shortage of research done on the subject. Therefore, this study aimed to determine the magnitude of psychological distress and associated factor among patients attending orthopedic treatment at Gedeo zone, South Ethiopia 2022. Methods: A cross-sectional study was undertaken at Dilla University Referral Hospital from October –November 2022. The data was collected via a face-to-face interview, and the Kessler psychological distress scale (K-10) was used to assess psychological distress. A total of 386 patients receiving outpatient and inpatient services at the orthopedic unit were chosen using a simple random selection technique. A Statistical Package for the Social Science version 21 (SPSS-21) was used to enter and evaluate the data. To find related factors, bivariate, and multivariate logistic regressions were used. Variables having a p-value of less than 0.05 were deemed statistically significant. Result: A total of 386 participants with a response rate of 94.8% were included in the study. Out of all respondents, 114 (31.4%) of the individuals have experienced psychological distress. Independent variables such as Females [Adjusted odds ratio (AOR)=5.8, 95%CI=(4.6-15.6)], Average monthly income of <3500 birrs [Adjusted odds ratio (AOR) =4.8, 95% CI=(2.4-9.8) ], Current history of substance use [Adjusted odds ratio (AOR) =2.6, 95% CI=(1.66-4.7)], Strong social support [Adjusted odds ratio (AOR)=0.4, 95% CI= 0.4(0.2-0.8)], and Poor sleep quality (PSQI score>5) [Adjusted odds ratio (AOR)=2.0, 95%CI= 2.0(1.2-2.8)] were significantly associated with psychological distress. Conclusion: The prevalence of psychological distress was high. Being female, having poor social support, and having a high PSQI score were significantly associated factors with psychological distress. It is good if clinicians emphasize orthopedic patients, especially females and those having poor social support and low sleep quality symptoms.

Keywords: psychological distress, orthopedic unit, Dilla University hospital, Dilla Town, Southern Ethiopia

Procedia PDF Downloads 89
1185 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding

Procedia PDF Downloads 297
1184 Health Communication and the Diabetes Narratives of Key Social Media Influencers in the UK

Authors: Z. Sun

Abstract:

Health communication is essential in promoting healthy lifestyles, managing disease conditions, and eventually reducing health disparities. The key elements of successful health communication always include the development of communication strategies to engage people in thinking about their health, inform them about healthy choices, persuade them to adopt safe and healthy behaviours, and eventually achieve public health objectives. The use of 'Narrative' is recognised as a kind of health communication strategy to enhance personal and public health due to its potential persuasive effect in motivating and supporting individuals change their beliefs and behaviours by inviting them into a narrative world, breaking down their cognitive and emotional resistance and enhance their acceptance of the ideas portrayed in narratives. Meanwhile, the popularity of social media has provided a novel means of communication for both healthcare stakeholders, and a special group of active social media users (influencers) have started playing a pivotal role in providing health ‘solutions’. Such individuals are often referred to as ‘influencers’ because of their central position in the online communication system and the persuasive effect their actions may have on audiences. They may have established a positive rapport with their audience, earned trust and credibility in a specific area, and thus, their audience considers the information they delivered to be authentic and influential. To our best knowledge, to date, there is no published research that examines the effect of diabetes narratives presented by social media influencers and their impacts on health-related outcomes. The primary aim of this study is to investigate the diabetes narratives presented by social media influencers in the UK because of the new dimension they bring to health communication and the potential impact they may have on audiences' health outcomes. This study is situated within the interpretivist and narrative paradigms. A mixed methodology combining both quantitative and qualitative approaches has been adopted. Qualitative data has been derived to provide a better understanding of influencers’ personal experiences and how they construct meanings and make sense of their world, while quantitative data has been accumulated to identify key social media influencers in the UK and measure the impact of diabetes narratives on audiences. Twitter has been chosen as the social media platform to initially identify key influencers. Two groups of participants are the top 10 key social media influencers in the UK and 100 audiences of each influencer, which means a total of 1000 audiences have been invited. This paper is going to discuss, first of all, the background of the research under the context of health communication; Secondly, the necessity and contribution of this research; then, the major research questions being explored; and finally, the methods to be used.

Keywords: diabetes, health communication, narratives, social media influencers

Procedia PDF Downloads 104
1183 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation

Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou

Abstract:

Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.

Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield

Procedia PDF Downloads 130
1182 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 526
1181 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 118
1180 Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania

Authors: Charles Ruffner, Michael Manton, Gintautas Kibirkstis, Gediminas Brazaitas, Vitas Marozas, Ekaterine Makrickiene, Rutile Pukiene, Per Angelstam

Abstract:

In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes.

Keywords: biodiversity conservation, cultural burning, dendrochronology, forest dynamics, forest management, succession

Procedia PDF Downloads 200
1179 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop

Procedia PDF Downloads 337
1178 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 168
1177 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 107
1176 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling

Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey

Abstract:

Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.

Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal

Procedia PDF Downloads 176
1175 Hierarchical Zeolites as Potential Carriers of Curcumin

Authors: Ewelina Musielak, Agnieszka Feliczak-Guzik, Izabela Nowak

Abstract:

Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin.

Keywords: carriers of active substances, curcumin, hierarchical zeolites, incorporation

Procedia PDF Downloads 98
1174 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 86
1173 Assessment of Climate Induced Hazards in Coastal Zone of Bangladesh: A Case Study of Koyra Upazilla under Khulna District and Shyamnagar Upazilla under Satkhira District

Authors: Kazi Ashief Mahmood

Abstract:

Geographically Bangladesh is located in a natural hazard prone area. Compared to the rest of the areas, the coastal sub-districts are more vulnerable to climate variability and change. However, the hydro-geophysical reality of the sub-districts predominantly determines their contexts of vulnerability and its nature differs accordingly. Intriguingly enough, the poorest of the areas appear to be the most cornered among the different vulnerable sectors. Among of these deprived segments; however, the women, the persons with disability and the minorities are generally more vulnerable and they face a high risk of marginalized. The most threatening hydro-geophysical climate vulnerability have been created by prolonged dry season as observed at Koyra Upazilla in Khulna districts and Shyamnagar in Satkhira districts. The prolonged dry season creates severe surface salinity by which farmers cannot produce or use their to cultivate. The absence of land-based production and employment in the area has led to severe food insecurity. As a result, farmers tend to change their livelihood option and many of them are forced to migrate to the other areas of the country in search of livelihood. Besides salinity intrusion, water logging, drought and different climate change induced hazards are endangering safe drinking water sources and putting small-holders out of agriculture-based livelihoods in the Koyra and Shyamnagar Upazilla. A sizeable fraction of small-holders are still trying to hold on to their small scale shrimp production, despite being under pressure to sell off their cultivating lands to their influential shrimp merchants. While their desperate effort to take advantage of the increasing salinity is somewhat successful, their families still face a greater risk of health hazards owing to the lack of safe drinking water. Unless the issues of salinity in drinking water cannot be redressed, the state of the affected people will be in great jeopardy. Most of the inhabitants of oKyra and Shyamnagar Upazilla are living under the poverty line. Thus, poverty is a major factor that intensifies the vulnerability caused by hydro-geophysical climatic conditions. The government and different NGOs are trying to improve the present scenario by implementing different disaster risk reduction projects along with poverty reduction for community empowerment.

Keywords: assessment, climate change, climate induced hazards, coastal zone

Procedia PDF Downloads 403
1172 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 222
1171 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 222
1170 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems

Authors: M. Beheshti, S. Saegrov, T. M. Muthanna

Abstract:

Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.

Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management

Procedia PDF Downloads 333
1169 Phytoremediation of Hydrocarbon-Polluted Soils: Assess the Potentialities of Six Tropical Plant Species

Authors: Pulcherie Matsodoum Nguemte, Adrien Wanko Ngnien, Guy Valerie Djumyom Wafo, Ives Magloire Kengne Noumsi, Pierre Francois Djocgoue

Abstract:

The identification of plant species with the capacity to grow on hydrocarbon-polluted soils is an essential step for phytoremediation. In view of developing phytoremediation in Cameroon, floristic surveys have been conducted in 4 cities (Douala, Yaounde, Limbe, and Kribi). In each city, 13 hydrocarbon-polluted, as well as unpolluted sites (control), have been investigated using quadrat method. 106 species belonging to 76 genera and 30 families have been identified on hydrocarbon-polluted sites, unlike the control sites where floristic diversity was much higher (166 species contained in 125 genera and 50 families). Poaceae, Cyperaceae, Asteraceae and Amaranthaceae have higher taxonomic richness on polluted sites (16, 15,10 and 8 taxa, respectively). Shannon diversity index of the hydrocarbon-polluted sites (1.6 to 2.7 bits/ind.) were significantly lower than the control sites (2.7 to 3.2 bits/ind.). Based on a relative frequency > 10% and abundance > 7%, this study highlights more than ten plants predisposed to be effective in the cleaning-up attempts of soils contaminated by hydrocarbons. Based on the floristic indicators, 6 species (Eleusine indica (L.) Gaertn., Cynodon dactylon (L.) Pers., Alternanthera sessilis (L.) R. Br. ex DC †, Commelinpa benghalensis L., Cleome ciliata Schum. & Thonn. and Asystasia gangetica (L.) T. Anderson) were selected for a study to determine their capacity to remediate a soil contaminated with fuel oil (82.5 ml/ kg of soil). The experiments lasting 150 days takes into account three modalities - Tn: uncontaminated soils planted (6) To contaminated soils unplanted (3) and Tp: contaminated soil planted (18) – randomized arranged. 3 on 6 species (Eleusine indica, Cynodon dactylon, and Alternanthera sessilis) survived the climatic and soil conditions. E. indica presents a significantly higher growth rate for density and leaf area while C. dactylon had a significantly higher growth rate for stem size and leaf numbers. A. sessilis showed stunted growth and development throughout the experimental period. The species Eleusine indica (L.) Gaertn. and Cynodon dactylon (L.) Pers. can be qualified as polluo-tolerant plant species; polluo-tolerance being the ability of a species to survive and develop in the midst subject to extreme physical and chemical disturbances.

Keywords: Cameroon, cleaning-up, floristic surveys, phytoremediation

Procedia PDF Downloads 243
1168 The Impact of AI on Consumers’ Morality: An Empirical Evidence

Authors: Mingxia Zhu, Matthew Tingchi Liu

Abstract:

AI grows gradually in the market with its efficiency and accuracy, influencing people’s perceptions, attitude, and even consequential behaviors. Current study extends prior research by focusing on AI’s impact on consumers’ morality. First, study 1 tested individuals’ believes about AI and human’s moral perceptions and people’s attribution of moral worth to AI and human. Moral perception refers to a computational system an entity maintains to detect and identify moral violations, while moral worth here denotes whether individual regard an entity as worthy of moral treatment. To identify the effect of AI on consumers’ morality, two studies were employed. Study 1 is a within-subjects survey, while study 2 is an experimental study. In the study 1, one hundred and forty participants were recruited through online survey company in China (M_age = 27.31 years, SD = 7.12 years; 65% female). The participants were asked to assign moral perception and moral worth to AI and human. A paired samples t-test reveals that people generally regard that human has higher moral perception (M_Human = 6.03, SD = .86) than AI (M_AI = 2.79, SD = 1.19; t(139) = 27.07, p < .001; Cohen’s d = 1.41). In addition, another paired samples t-test results showed that people attributed higher moral worth to the human personnel (M_Human = 6.39, SD = .56) compared with AIs (M_AI = 5.43, SD = .85; t(139) = 12.96, p < .001; d = .88). In the next study, two hundred valid samples were recruited from survey company in China (M_age = 27.87 years, SD = 6.68 years; 55% female) and the participants were randomly assigned to two conditions (AI vs. human). After viewing the stimuli of human versus AI, participants are informed that one insurance company would determine the price purely based on their declaration. Therefore, their open-ended answers were coded into ethical, honest behavior and unethical, dishonest behavior according to the design of prior literature. A Chi-square analysis revealed that 64% of the participants would immorally lie towards AI insurance inspector while 42% of participants reported deliberately lower mileage facing with human inspector (χ^2 (1) = 9.71, p = .002). Similarly, the logistic regression results suggested that people would significantly more likely to report fraudulent answer when facing with AI (β = .89, odds ratio = 2.45, Wald = 9.56, p = .002). It is demonstrated that people would be more likely to behave unethically in front of non-human agents, such as AI agent, rather than human. The research findings shed light on new practical ethical issues in human-AI interaction and address the important role of human employees during the process of service delivery in the new era of AI.

Keywords: AI agent, consumer morality, ethical behavior, human-AI interaction

Procedia PDF Downloads 82
1167 Ayurvastra: A Study on the Ancient Indian Textile for Healing

Authors: Reena Aggarwal

Abstract:

The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.

Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable

Procedia PDF Downloads 130
1166 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.

Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy

Procedia PDF Downloads 89
1165 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: ignition transient, solid rockets, starting transient, thrust transient

Procedia PDF Downloads 449
1164 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 166
1163 Biopolymers: A Solution for Replacing Polyethylene in Food Packaging

Authors: Sonia Amariei, Ionut Avramia, Florin Ursachi, Ancuta Chetrariu, Ancuta Petraru

Abstract:

The food industry is one of the major generators of plastic waste derived from conventional synthetic petroleum-based polymers, which are non-biodegradable, used especially for packaging. These packaging materials, after the food is consumed, accumulate serious environmental concerns due to the materials but also to the organic residues that adhere to them. It is the concern of specialists, researchers to eliminate problems related to conventional materials that are not biodegradable or unnecessary plastic and replace them with biodegradable and edible materials, supporting the common effort to protect the environment. Even though environmental and health concerns will cause more consumers to switch to a plant-based diet, most people will continue to add more meat to their diet. The paper presents the possibility of replacing the polyethylene packaging from the surface of the trays for meat preparations with biodegradable packaging obtained from biopolymers. During the storage of meat products may occur deterioration by lipids oxidation and microbial spoilage, as well as the modification of the organoleptic characteristics. For this reason, different compositions of polymer mixtures and film conditions for obtaining must be studied to choose the best packaging material to achieve food safety. The compositions proposed for packaging are obtained from alginate, agar, starch, and glycerol as plasticizers. The tensile strength, elasticity, modulus of elasticity, thickness, density, microscopic images of the samples, roughness, opacity, humidity, water activity, the amount of water transferred as well as the speed of water transfer through these packaging materials were analyzed. A number of 28 samples with various compositions were analyzed, and the results showed that the sample with the highest values for hardness, density, and opacity, as well as the smallest water vapor permeability, of 1.2903E-4 ± 4.79E-6, has the ratio of components as alginate: agar: glycerol (3:1.25:0.75). The water activity of the analyzed films varied between 0.2886 and 0.3428 (aw< 0.6), demonstrating that all the compositions ensure the preservation of the products in the absence of microorganisms. All the determined parameters allow the appreciation of the quality of the packaging films in terms of mechanical resistance, its protection against the influence of light, the transfer of water through the packaging. Acknowledgments: This work was supported by a grant of the Ministry of Research, Innovation, and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2019-3863, within PNCDI III.

Keywords: meat products, alginate, agar, starch, glycerol

Procedia PDF Downloads 167
1162 Architecture for Hearing Impaired: A Study on Conducive Learning Environments for Deaf Children with Reference to Sri Lanka

Authors: Champa Gunawardana, Anishka Hettiarachchi

Abstract:

Conducive Architecture for learning environments is an area of interest for many scholars around the world. Loss of sense of hearing leads to the assumption that deaf students are visual learners. Comprehending favorable non-hearing attributes of architecture can lead to effective, rich and friendly learning environments for hearing impaired. The objective of the current qualitative investigation is to explore the nature and parameters of a sense of place of deaf children to support optimal learning. The investigation was conducted with hearing-impaired children (age: between 8-19, Gender: 15 male and 15 female) of Yashodhara deaf and blind school at Balangoda, Sri Lanka. A sensory ethnography study was adopted to identify the nature of perception and the parameters of most preferred and least preferred spaces of the learning environment. The common perceptions behind most preferred places in the learning environment were found as being calm and quiet, sense of freedom, volumes characterized by openness and spaciousness, sense of safety, wide spaces, privacy and belongingness, less crowded, undisturbed, availability of natural light and ventilation, sense of comfort and the view of green colour in the surroundings. On the other hand, the least preferred spaces were found to be perceived as dark, gloomy, warm, crowded, lack of freedom, smells (bad), unsafe and having glare. Perception of space by deaf considering the hierarchy of sensory modalities involved was identified as; light - color perception (34 %), sight - visual perception (32%), touch - haptic perception (26%), smell - olfactory perception (7%) and sound – auditory perception (1%) respectively. Sense of freedom (32%) and sense of comfort (23%) were the predominant psychological parameters leading to an optimal sense of place perceived by hearing impaired. Privacy (16%), rhythm (14%), belonging (9%) and safety (6%) were found as secondary factors. Open and wide flowing spaces without visual barriers, transparent doors and windows or open port holes to ease their communication, comfortable volumes, naturally ventilated spaces, natural lighting or diffused artificial lighting conditions without glare, sloping walkways, wider stairways, walkways and corridors with ample distance for signing were identified as positive characteristics of the learning environment investigated.

Keywords: deaf, visual learning environment, perception, sensory ethnography

Procedia PDF Downloads 230