Search results for: experimental simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11357

Search results for: experimental simulation

2177 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models

Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul

Abstract:

Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.

Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract

Procedia PDF Downloads 261
2176 The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars

Authors: Chris Phan, Yong Seok Park

Abstract:

The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.

Keywords: A-pillar, Crashworthiness, Design Synthesis, Finite Element Analysis

Procedia PDF Downloads 112
2175 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment

Authors: Yakui Bai, Chen Sun, Ke Wang

Abstract:

An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.

Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking

Procedia PDF Downloads 122
2174 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus

Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.

Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology

Procedia PDF Downloads 409
2173 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players

Authors: Jocelyn Solomons, Kraak

Abstract:

Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.

Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training

Procedia PDF Downloads 59
2172 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 79
2171 Evaluation of the Effect of Nursing Services Provided in a Correctional Institution on the Physical Health Levels and Health Behaviors of Female Inmates

Authors: Şenay Pehli̇van, Gülümser Kublay

Abstract:

Female inmates placed in a Correctional Institution (CI) have more physical health problems than other women and their male counterparts. Thus, they require more health care services in the CI and nursing services in particular. CI nurses also have the opportunity to teach behaviors which will protect and improve their health to these women who are difficult to reach in the community. The aim of this study was to evaluate effect of nursing services provided in a CI on the physical health levels and health behaviors of female inmates. The study has a quasi-experimental design. The study was done in Female Closed CI in Ankara, Turkey. The study was conducted on 30 female inmates. Before the implementation of nursing interventions in the initial phase of the study, female inmates were evaluated in terms of physical health problems and health behavior using forms, a physical examination, medical history, health files (file containing medical information related to prisons) and the Omaha System (OS). Findings obtained from evaluations were grouped and symptoms-findings were expressed with OS diagnosis codes. Knowledge, behavior and status scores of prisoners in relation to health problems were determined. After the implementation of the nursing interventions, female inmates were evaluated in terms of physical health problems and health behavior using OS. The research data were collected using the Female Evaluation Form developed by the researcher and the OS. It was found that knowledge, behavior and status scores of prisoners significantly increased after the implementation of nursing interventions (p < 0.05).

Keywords: prison nursing, health promotion and protecting, nursi̇ng servi̇ces, omaha system

Procedia PDF Downloads 258
2170 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus

Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden

Abstract:

Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.

Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus

Procedia PDF Downloads 201
2169 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows

Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar

Abstract:

In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.

Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF

Procedia PDF Downloads 356
2168 Effect of Different Muscle Contraction Mode on the Expression of Myostatin, IGF-1, and PGC-1 Alpha Family Members in Human Vastus Lateralis Muscle

Authors: Pejman Taghibeikzadehbadr

Abstract:

Muscle contraction stimulates a transient change of myogenic factors, partly related to the mode of contractions. Here, we assessed the response of Insulin-like growth factor 1Ea (IGF-1Ea), Insulin-like growth factor 1Eb (IGF-1Eb), Insulin-like growth factor 1Ec (IGF-1Ec), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α-1), Peroxisome proliferator-activated receptor gamma coactivator 4-alpha (PGC1α-4), and myostatin to the eccentric Vs the concentric contraction in human skeletal muscle. Ten healthy males were performed an acute eccentric and concentric exercise bout (n = 5 per group). For each contraction type, participants performed 12 sets of 10 repetitions knee extension by the dominant leg. Baseline and post-exercise muscle biopsy were taken 4 weeks before and immediately after experimental sessions from Vastus Lateralis muscle. Genes expression was measured by real-time PCR technique. There was a significant increase in PGC1α-1, PGC1α-4, IGF-1Ea and, IGF-1Eb mRNA after concentric contraction (p ≤ 0.05), while the PGC1α-4 and IGF-1Ec significantly increased after eccentric contraction (p ≤ 0.05). It is intriguing to highlight that; no significant differences between groups were evident for changes in any variables following exercise bouts (p ≥ 0.05). Our results found that concentric and eccentric contractions presented different responses in PGC1α-1, IGF-1Ea, IGF-1Eb, and IGF-1Ec mRNA. However, a similar significant increase in mRNA content was observed in PGC1α-4. Further, no apparent differences could be found between the response of genes to eccentric and concentric contraction.

Keywords: eccentric contraction, concentric contraction, gene expression, PGC-1 alpha, IGF-1 Myostatin

Procedia PDF Downloads 156
2167 Effect of Online Mindfulness Training to Tertiary Students’ Mental Health: An Experimental Research

Authors: Abigaile Rose Mary R. Capay, Janne Ly Castillon-Gilpo, Sheila A. Javier

Abstract:

The transition to online learning has been a challenging feat on the mental health of tertiary students. This study investigated whether learning mindfulness strategies online would help in improving students’ imagination, conscientiousness, extraversion, agreeableness and emotional stability, as measured by the International Personality Item Pool (IPIP) Big Five Factor Markers, as well as their dispositional mindfulness as measured by the Mindfulness Attention Awareness Scale (MAAS). Fifty-two college students participated in the experiment. The 23 participants assigned to the treatment condition received 6-weekly experiential sessions of online mindfulness training and were advised to follow a daily mindfulness practice, while the 29 participants from the control group only received a 1-hour lecture. Scores were collected at pretest and posttest. Findings show that there was a significant difference in the pretest and posttest scores of students assigned in the treatment group, likewise medium effect sizes in the variables: dispositional mindfulness (t (22) = 2.64, p = 0.015, d = .550), extraversion (t (22) = 2.76, p = 0.011, d = 0.575), emotional stability (t (22) = 2.99, p = 0.007, d = .624), conscientiousness (t (22) = 2.74, p = 0.012, d = .572) and imagination (t (22) = 4.08, p < .001), but not for agreeableness (t (22) = 2.01, p = 0.057, d = .419). No significant differences were observed on the scores of the control group. Educational institutions are recommended to consider teaching basic mindfulness strategies to tertiary students, as a valuable resource in improving their mental health as they navigate through adjustments in online learning.

Keywords: mindfulness, school-based interventions, MAAS, IPIP Big Five Markers, experiment

Procedia PDF Downloads 54
2166 Percentage Change in the Selected Skinfold Measurements of Male Students of University of Delhi Due to Progressive and Constant Load of Physical Training

Authors: Seema Kaushik

Abstract:

Skinfold measurements provide considerably meaningful and consistent information about subcutaneous fat and its distribution. Physical activities in the form of conditioning and/or training leads to various structural, functional and mechanical changes and numerous training programmes exist for the improvement of physical fitness, however, most of the studies are conducted on foreign soil with foreign population as sample, which may/may not be applicable to the Indian conditions. Moreover, there is not even a single training/ conditioning programme that caters to the need of male students of University of Delhi with regard to various skinfold thickness measurements. Hence, the present study aimed at studying the effect of progressive and constant load training on selected skinfold measurements of male students of University of Delhi in form of percentage change. The sample size for the study was 90 having three groups of male; 30 samples in each group (mean age = 20.04±0.49 years). The variables included triceps, sub-scapular, supra-iliac and calf skinfolds. The experimental design adopted for the study was multi-group repeated measure design. Three different groups were measured four times repeatedly at an interval of 6 weeks, on completion of each of the three meso-cycles. Standard landmarks and protocols were followed to measure the selected variables. Mean, standard deviation and percentage were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the skinfold thickness measurements of male students of University of Delhi.

Keywords: constant load, progressive load, physical training, skinfold measurements

Procedia PDF Downloads 319
2165 Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina

Abstract:

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Keywords: bakers' yeasts, killer toxin, rope in bread, Saccharomyces cerevisiæ

Procedia PDF Downloads 232
2164 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 234
2163 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 419
2162 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 221
2161 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates

Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen

Abstract:

Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.

Keywords: accident, fuel, modelling, zirconium

Procedia PDF Downloads 139
2160 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis

Authors: K. Rana, H.A.Saeed, S. Zahir

Abstract:

Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.

Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis

Procedia PDF Downloads 368
2159 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process

Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban

Abstract:

The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.

Keywords: APB, nano composite, nano particles, severe plastic deformation

Procedia PDF Downloads 296
2158 Supernatural Beliefs Impact Pattern Perception

Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr

Abstract:

A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.

Keywords: culture, esoteric belief, pattern perception, religiosity

Procedia PDF Downloads 180
2157 Effect of Many Levels of Undegradable Protein on Performance, Blood Parameters, Colostrum Composition and Lamb Birth Weight in Pregnant Ewes

Authors: Maria Magdy Danial Riad

Abstract:

The objective of this study was to investigate the effect of different protein sources with different degradability ratios during late gestation of ewes on colostrum composition and its IgG concentration, body weight change of dams, and birth weight of their lambs. Objectives: 35 multiparous native crossbred ewes (BW= 59±2.5kg) were randomly allocated to five dietary treatments (7 ewes / treatment) for 2 months prior to lambing. Methods: Experimental diets were isonitrogenous (12.27% CP) and isocaloric (2.22 Mcal ME/kg DM). In diet I (the control), solvent extract soybeans (SESM 33% RUP of CP), II feed grade urea (FGU 31% RUP), III slow release urea (SRU 31% RUP). As sources of undegradable protein, extruded expeller SBM-EESM 40 (37% RUP) and extruded expeller SBM-EESM 60 (41% RUP) were used in groups IV and V, respectively. Results showed no significant effect on feed intake, crude protein (CP), metabolizable energy (ME), and body condition score (BCS). Ewes fed the 37% RUP diet gained more (p<0.05) weight compared with ewes fed the 31% RUP diet (5.62 vs. 2.5kg). Ewes in EESM 60 had the highest levels of fat, protein, total solid, solid not fat, and immunoglobulin and the lowest in urea N content (P< 0.05) in colostrum during the first 24hrs after lambing. Conclusions: Protein source and RUP levels in ewes’ diets had no significant effect (P< 0.05) on lambs’ birth weight and ewes' blood biochemical parameters. Increasing the RUP content of diet during late gestation resulted in an increase in colostrum constituents and its IgG level but had no effect on ewes’ performance and their lambs’ outcome.

Keywords: colostrum, ewes, lambs output, pregnancy, undegradable protein

Procedia PDF Downloads 47
2156 The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+

Authors: Ghayah Alsaleem

Abstract:

This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication.

Keywords: long lasting, phosphorescence, excitation, europium

Procedia PDF Downloads 179
2155 In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis

Authors: Kieren Luellman, Makenzi Rockwell, Eduardo Callegari, Nichole Haag, Chun Wu

Abstract:

Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS.

Keywords: multiple sclerosis, pathogenesis, Acinetobacter baumannii, antibody recognition

Procedia PDF Downloads 114
2154 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 300
2153 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 213
2152 Recycling of Spent Mo-Co Catalyst for the Recovery of Molybdenum Using Cyphos IL 104

Authors: Harshit Mahandra, Rashmi Singh, Bina Gupta

Abstract:

Molybdenum is widely used in thermocouples, anticathode of X-ray tubes and in the production of alloys of steels. Molybdenum compounds are extensively used as a catalyst in petroleum-refining industries for hydrodesulphurization. Activity of the catalysts decreases gradually with time and are dumped as hazardous waste due to contamination with toxic materials during the process. These spent catalysts can serve as a secondary source for metal recovery and help to sort out environmental and economical issues. In present study, extraction and separation of molybdenum from a Mo-Co spent catalyst leach liquor containing 0.870 g L⁻¹ Mo, 0.341 g L⁻¹ Co, 0.422 ×10⁻¹ g L⁻¹ Fe and 0.508 g L⁻¹ Al in 3 mol L⁻¹ HCl has been investigated using solvent extraction technique. The extracted molybdenum has been finally recovered as molybdenum trioxide. Leaching conditions used were- 3 mol L⁻¹ HCl, 90°C temperature, solid to liquid ratio (w/v) of 1.25% and reaction time of 60 minutes. 96.45% molybdenum was leached under these conditions. For the extraction of molybdenum from leach liquor, Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] in toluene was used as an extractant. Around 91% molybdenum was extracted with 0.02 mol L⁻¹ Cyphos IL 104, and 75% of molybdenum was stripped from the loaded organic phase with 2 mol L⁻¹ HNO₃ at A/O=1/1. McCabe Thiele diagrams were drawn to determine the number of stages required for the extraction and stripping of molybdenum. According to McCabe Thiele plots, two stages are required for both extraction and stripping of molybdenum at A/O=1/1 which were also confirmed by countercurrent simulation studies. Around 98% molybdenum was extracted in two countercurrent extraction stages with no co-extraction of cobalt and aluminum. Iron was removed from the loaded organic phase by scrubbing with 0.01 mol L⁻¹ HCl. Quantitative recovery of molybdenum is achieved in three countercurrent stripping stages at A/O=1/1. Trioxide of molybdenum was obtained from strip solution and was characterized by XRD, FE-SEM and EDX techniques. Molybdenum trioxide due to its distinctive electrochromic, thermochromic and photochromic properties is used as a smart material for sensors, lubricants, and Li-ion batteries. Molybdenum trioxide finds application in various processes such as methanol oxidation, metathesis, propane oxidation and in hydrodesulphurization. It can also be used as a precursor for the synthesis of MoS₂ and MoSe₂.

Keywords: Cyphos IL 104, molybdenum, spent Mo-Co catalyst, recovery

Procedia PDF Downloads 199
2151 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.

Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil

Procedia PDF Downloads 295
2150 Determination of Fatigue Limit in Post Impacted Carbon Fiber Reinforced Epoxy Polymer (CFRP) Specimens Using Self Heating Methodology

Authors: Deepika Sudevan, Patrick Rozycki, Laurent Gornet

Abstract:

This paper presents the experimental identification of the fatigue limit for pristine and impacted Carbon Fiber Reinforced Epoxy polymer (CFRP) woven composites based on the relatively new self-heating methodology for composites. CFRP composites of [0/90]8 and quasi isotropic configurations prepared using hand-layup technique are subjected to low energy impacts (20 J energy) simulating a barely visible impact damage (BVID). Runway debris strike, tool drop or hailstone impact can cause a BVID on an aircraft fuselage made of carbon composites and hence understanding the post-impact fatigue response of CFRP laminates is of immense importance to the aerospace community. The BVID zone on the specimens is characterized using X-ray Tomography technique. Both pristine and impacted specimens are subjected to several blocks of constant amplitude (CA) fatigue loading keeping R-ratio a constant but with increments in the mean loading stress after each block. The number of loading cycles in each block is a subjective parameter and it varies for pristine and impacted CFRP specimens. To monitor the temperature evolution during fatigue loading, thermocouples are pasted on the CFRP specimens at specific locations. The fatigue limit is determined by two strategies, first is by considering the stabilized temperature in every block and second is by considering the change in the temperature slope per block. The results show that both strategies can be adopted to determine the fatigue limit in both pristine and impacted CFRP composites.

Keywords: CFRP, fatigue limit, low energy impact, self-heating, WRM

Procedia PDF Downloads 227
2149 Evaluation of Insulin Sensitizing Effects of Different Fractions from Total Alcoholic Extract of Moringa oleifera Lam. Bark in Dexamethasone-Induced Insulin Resistant Rats

Authors: Hasanpasha N. Sholapur, Basanagouda M.Patil

Abstract:

Alcoholic extract of the bark of Moringa oleifera Lam. (MO), (Moringaceae), has been evaluated experimentally in the past for its insulin sensitizing potentials. In order to explore the possibility of the class of phytochemical(s) responsible for this experimental claim, the alcoholic extract was fractionated into non-polar [petroleum ether (PEF)], moderately non-polar [ethyl acetate (EAF)] and polar [aqueous (AQF)] fractions. All the fractions and pioglitazone (PIO) as standard (10mg/kg were p.o., once daily for 11 d) were investigated for their chronic effect on fasting plasma glucose, triglycerides, total cholesterol, insulin, oral glucose tolerance and acute effect on oral glucose tolerance in dexamethasone-induced (1 mg/kg s.c., once daily for 11 d) chronic model and acute model (1 mg/kg i.p., for 4 h) respectively for insulin resistance (IR) in rats. Among all the fractions tested, chronic treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced IR, indicated by prevention of hypertriglyceridemia, hyperinsulinemia and oral glucose intolerance, whereas treatment with AQF (95 mg/kg) prevented hepatic IR but not peripheral IR. In acute study single dose treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced oral glucose intolerance, fraction PEF did not show any effect on these parameters in both the models. The present study indicates that the triterpenoidal and the phenolic class of phytochemicals detected in EAF of alcoholic extract of MO bark may be responsible for the prevention of dexamethasone-induced insulin resistance in rats.

Keywords: Moringa oleifera, insulin resistance, dexamethasone, serum triglyceride, insulin, oral glucose tolerance test

Procedia PDF Downloads 365
2148 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: organic Rankine cycle, regenerative organic Rankine cycle, waste heat recovery, Indian industry

Procedia PDF Downloads 370