Search results for: finite element model/COMSOL multiphysics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19187

Search results for: finite element model/COMSOL multiphysics

10097 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 231
10096 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 190
10095 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 343
10094 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
10093 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: autonomic, self-adaption, self-healing, self-optimization

Procedia PDF Downloads 351
10092 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 176
10091 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax

Procedia PDF Downloads 417
10090 Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA

Authors: Glenda Marie D. Balitaan

Abstract:

The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters.

Keywords: inventory management, integer linear programming, inventory management system, feed mill

Procedia PDF Downloads 84
10089 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 184
10088 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics

Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah

Abstract:

Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.

Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics

Procedia PDF Downloads 133
10087 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 241
10086 The Effect of β-Cryptoxanthin on Testicular Ischemia-Reperfusion Injury in a Rat Model: Evidence from Testicular Histology

Authors: Kianoush Mohammadnejad, Rahim Mohammadi, Ali Soleimanzadeh, Ali Shalizar Jalai, Farshid Sareafzadeh Rezaei

Abstract:

Testicular torsion and detorsion are significant clinical issues for infertile men. Torsion of the spermatic cord is an emergency condition resulting from the rotation of the testis and epididymis around the axis of the spermatic cord. A rat testis model was used to assess the effects of β-cryptoxanthin on ischemia-reperfusion injury. Twenty healthy male Wistar rats were included and randomized into four investigational groups (n = 5): Group SHAM: In this group, midline incision of the scrotum was performed, and the testicles were taken out for 2 hours with a 720-degree rotation. Group ISCHEMIA: In this group, a midline incision of the scrotum was performed, and the testicles were taken out and underwent ischemia for 2 hours with a 720-degree rotation. Group IS/REP/Oil: In this group, a midline scrotum cut was performed the testicles were taken out, and ischemia was created for 2 hours with a 720-degree rotation and at the end of ischemia 100 µL of corn oil (β-cryptoxanthin solvent) was injected intraperitoneally. Group IS/REP/CRPTXNTN 2.5: The same as group IS/REP/Oil as well as intraperitoneal administration of 100 µL of β-cryptoxanthin (2.5 µg/kg) at the end of ischemia. In all groups, the testes were returned back to the scrotum and, after 60 days, were dissected out and removed for histopathological analyses. β-cryptoxanthin at the dose of 2.5 µg/kg significantly improved histologic indices compared to other treatment groups (p<0.05). β-cryptoxanthin could be helpful in minimizing ischemia-reperfusion injury in testicular tissue exposed to ischemia.

Keywords: beta-cryptoxanthin, testis, Ischemia-reperfusion, Intraperitoneal

Procedia PDF Downloads 20
10085 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
10084 Epstein-Barr Virus-associated Diseases and TCM Syndromes Types: In Search for Correlation

Authors: Xu Yifei, Le Yining, Yang Qingluan, Tu Yanjie

Abstract:

Objective: This study aims to investigate the distribution features of Traditional Chinese Medicine (TCM) syndromes and syndrome elements in Epstein-Barr virus-associated diseases and then explores the relations between TCM syndromes or syndrome elements and laboratory indicators of Epstein-Barr virus-associated diseases. Methods: A cross-sectional study of 70 patients with EBV infection was described. We assessed the diagnostic information and laboratory indicators of these patients from Huashan Hospital Affiliated to Fudan University between November 2017 and July 2019. The disease diagnosis and syndrome differentiation were based on the diagnostic criteria of EBV-associated diseases and the theory of TCM respectively. Confidence correlation analysis, logistic regression analysis, cluster analysis, and the Sankey diagram were used to analyze the correlation between the data. Results: The differentiation of the 4 primary TCM syndromes in the collected patients was correlated with the indexes of immune function, liver function, inflammation, and anemia, especially the relationship between Qifen syndrome and high lactic acid dehydrogenase level. The common 11 TCM syndrome elements were associated with the increased CD3+ T cell rate, low hemoglobin level, high procalcitonin level, high lactic acid dehydrogenase level, and low albumin level. Conclusion: The changes in immune function indexes, procalcitonin, and liver function-related indexes in patients with EBV-associated diseases were consistent with the evolution law of TCM syndromes. This study provides a reference for judging the pathological stages of these kinds of diseases, predicting their prognosis, and guiding subsequent treatment strategies based on TCM syndrome type.

Keywords: EBV-associated diseases, traditional Chinese medicine syndrome, syndrome element, diagnostics

Procedia PDF Downloads 110
10083 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru

Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama

Abstract:

There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.

Keywords: water economy, simulation, modeling, integration

Procedia PDF Downloads 156
10082 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 167
10081 Teaching Techno-Criticism to Digital Natives: Participatory Journalism as Pedagogical Practice

Authors: Stephen D. Caldes

Abstract:

Teaching media and digital literacy to “digital natives” presents a unique set of pedagogical obstacles, especially when critique is involved, as these early-adopters tend to deify most technological and/or digital advancements and inventions. Knowing no other way of being, these natives are often reluctant to hear criticisms of the way they receive information, educate themselves, communicate with others, and even become enculturated because critique often connotes generational gaps and/or clandestine efforts to produce neo-Luddites. To digital natives, techno-criticism is more the result of an antiquated, out-of-touch agenda rather than a constructive, progressive praxis. However, the need to cultivate a techno-critical perspective among technology’s premier users has, perhaps, never been more pressing. In an effort to sidestep reluctance and encourage critical thought about where we are in terms of digital technology and where exactly it may be taking us, this essay outlines a new model for teaching techno-criticism to digital natives. Specifically, it recasts the techniques of participatory journalism—helping writers and readers understand subjects outside of their specific historical context—as progressive, interdisciplinary pedagogy. The model arises out of a review of relevant literature and data gathered via literary analysis and participant observation. Given the tenuous relationships between novel digital advancements, individual identity, collective engagement, and, indeed, Truth/fact, shepherding digital natives toward routine practice of “techno-realism” seems of utter importance.

Keywords: digital natives, journalism education, media literacy, techno-criticism

Procedia PDF Downloads 320
10080 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies

Authors: Saiakhil Chilaka

Abstract:

Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.

Keywords: juvenile, justice system, data analysis, SHAP

Procedia PDF Downloads 25
10079 Preparation of Nano-Scaled linbo3 by Polyol Method

Authors: Gabriella Dravecz, László Péter, Zsolt Kis

Abstract:

Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.

Keywords: lithium-niobate, nanoparticles, polyol, SEM

Procedia PDF Downloads 135
10078 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley

Authors: Sajana Suwal, Ganesh R. Nhemafuki

Abstract:

Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.

Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response

Procedia PDF Downloads 292
10077 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS

Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija

Abstract:

Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.

Keywords: multilevel modelling, family planning, predictors, Nigeria

Procedia PDF Downloads 420
10076 Consistent Testing for an Implication of Supermodular Dominance with an Application to Verifying the Effect of Geographic Knowledge Spillover

Authors: Chung Danbi, Linton Oliver, Whang Yoon-Jae

Abstract:

Supermodularity, or complementarity, is a popular concept in economics which can characterize many objective functions such as utility, social welfare, and production functions. Further, supermodular dominance captures a preference for greater interdependence among inputs of those functions, and it can be applied to examine which input set would produce higher expected utility, social welfare, or production. Therefore, we propose and justify a consistent testing for a useful implication of supermodular dominance. We also conduct Monte Carlo simulations to explore the finite sample performance of our test, with critical values obtained from the recentered bootstrap method, with and without the selective recentering, and the subsampling method. Under various parameter settings, we confirmed that our test has reasonably good size and power performance. Finally, we apply our test to compare the geographic and distant knowledge spillover in terms of their effects on social welfare using the National Bureau of Economic Research (NBER) patent data. We expect localized citing to supermodularly dominate distant citing if the geographic knowledge spillover engenders greater social welfare than distant knowledge spillover. Taking subgroups based on firm and patent characteristics, we found that there is industry-wise and patent subclass-wise difference in the pattern of supermodular dominance between localized and distant citing. We also compare the results from analyzing different time periods to see if the development of Internet and communication technology has changed the pattern of the dominance. In addition, to appropriately deal with the sparse nature of the data, we apply high-dimensional methods to efficiently select relevant data.

Keywords: supermodularity, supermodular dominance, stochastic dominance, Monte Carlo simulation, bootstrap, subsampling

Procedia PDF Downloads 130
10075 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.

Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression

Procedia PDF Downloads 277
10074 Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials

Authors: Mohamed Sifan, Brabha Nagaratnam, Julian Thamboo, Keerthan Poologanathan

Abstract:

Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach.

Keywords: cost-effective, limestone powder, particle packing model, ultra high performance concrete

Procedia PDF Downloads 114
10073 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 55
10072 A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0

Authors: Johannes Atug, Andreas Radke, Mitchell Tseng, Gunther Reinhart

Abstract:

In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined.

Keywords: cyber-physical production systems, event-based monitoring, supply chain management, RAMI (Reference-Architecture-Model for Industrie 4.0)

Procedia PDF Downloads 238
10071 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay

Procedia PDF Downloads 398
10070 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: cyclic loading, delayed wire rope bracing, ductile moment frame, energy absorption, hysteresis curve

Procedia PDF Downloads 292
10069 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 119
10068 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 316