Search results for: tree identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3772

Search results for: tree identification

2902 Implicit and Explicit Mechanisms of Emotional Contagion

Authors: Andres Pinilla Palacios, Ricardo Tamayo

Abstract:

Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.

Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation

Procedia PDF Downloads 315
2901 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 87
2900 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn

Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem

Abstract:

Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.

Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective

Procedia PDF Downloads 194
2899 Investigating 'Criticality' in Written Assignments of Postgraduate Students in TESOL and Applied Linguistics

Authors: Josephine Mirador

Abstract:

Too often, one hears teachers complaining about how uncritical students can be, yet the notion of ‘criticality’ may be subject to variable understandings or interpretations. One challenge facing postgraduate students is the writing of essays responding to a specific reading assignment. Such an essay requires students not only to summarise, but to engage in a discussion of the significant points of the article, pointing out its strengths as well as its weaknesses. This paper presents the results of an investigation on criticality in written assignments of postgraduate students in applied linguistics and TESOL. The guiding questions for this investigation were: -How ‘critical’ are postgraduate students when writing their assignments? -What kind of ‘critical’ comments are they able to offer? A total of 70 essays were analysed, using two sets of corpora in the initial and follow-through phases of the research from three different universities in Asia. The essays were written by MA applied linguistics and TESOL students. Students were told that the response essay should definitely not just summarise, but should offer a reflection or critique on the ideas presented in the subject article. The initial findings from the investigation include: the identification of at least 10 general ‘moves’ each of which has a number of possible specific categories; presence of critique ‘nodes’ as distinguished from ‘support’ comments; and the identification of at least 4 moves as the most recurrent and possibly obligatory categories. This investigation has unearthed a few more questions or issues that are definitely worth investigating as extensions of this research, and will be of interest (most especially) to genre analysts and teachers of writing.

Keywords: criticality, discourse and genre analysis, postgraduate students, applied linguistics

Procedia PDF Downloads 387
2898 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 115
2897 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals

Authors: Bharatendra Rai

Abstract:

Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.

Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression

Procedia PDF Downloads 350
2896 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke

Abstract:

The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.

Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures

Procedia PDF Downloads 251
2895 Composite Base Natural Fiber

Authors: Noureddine Mahmoudi

Abstract:

The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP / date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight.

Keywords: plant fiber, palm, SEM, compatibilizer

Procedia PDF Downloads 457
2894 Identification and Antibiotic Susceptibility of Bacteria Isolated from the Intestines of Slaughtered Goat and Cattle

Authors: Latifat Afolake Ogunfolabo, Hakeem Babafemi Ogunfolabo

Abstract:

The gastrointestinal tract is densely populated with micro-organism which closely and intensively interacts with the host and ingested feed. Food borne infections are some of the major international challenges that lead to high mortality and also, antimicrobial resistance, which has been classified as a serious threat by World Health Organization. Samples of slaughtered cattle and goats intestines were collected and standard culture methods were used for bacteria isolation and identification. Minimum inhibitory concentration of commonly used antibiotic using modification of the disk diffusion method was carried out on isolates. The samples cultured were all positive to Pseudomonas aeruginosa (95% and 90%), Escherichia coli (85%), Salmonella typhi (70% and 60%), Staphylococcus aureus (75%and 100%), Micrococcus luteus (55% and35%), Bacillus macerans (60% and 5%), Bacillus cereus (25% and 20%), Clostridium perfringens (20% and 5%), Micrococcus varians (20% and 5%), Bacillus subtilis (25% and 5%), Streptococcus faecalis (40% and 25%) and Streptococcus faecium (15% and 10%) in goat and cattle respectively. Also, Proteus mirabilis (40%), Micrococcus luteus (35%), Proteus vulgaris (30%), Klebsiella aerogenes(15%) were isolated from cattle. The total coliform (13.55 x10⁵cfu/gm ± 1.77) and (20.30 x10⁵cfu/gm ± 1.27) counts were significantly higher than the total bacteria count (8.3 x10⁵cfu/gm ± 1.41) and (16.60 x10⁵cfu/gm ±0.49) for goat and cattle respectively. Selected Bacteria count of isolates showed that Staphylococcus aureus had the highest significant value (6.9 x10⁵cfu/gm ± 0.57) and (16.80 x10⁵cfu/gm ± 0.57) Escherichia coli (4.60 x10⁵cfu/gm ± 0.42) and (7.05 x10⁵cfu/gm ± 0.64) while the lowest significant value was obtained in Salmonella/Shigella (1.7 x10⁵cfu/gm ± 0.00) and (1.5 x10⁵cfu/gm ± 0.00) for goat and cattle respectively. Susceptibility of bacteria isolated from slaughtered goat and cattle intestine to commonly used antibiotics showed that the highest statistical significant value for zone of inhibition for goat was obtained for Ciprofloxacin (30.00 ± 2.25, 23.75 ± 2.49, 17.17 ± 1.40) followed by Augmentin (28.33 ± 1.22, 21. 83 ± 2.44, 16.67 ± 1.49), Erythromycin (27.75 ±1.48, 20.25 ± 1.29, 16.67 ± 1.26) while the lowest values were obtained for Ofloxacin (27.17 ± 1.89, 21.42 ± 2.19, 16.83 ± 1.26) respectively and values obtained for cattle are Ciprofloxacin (30.64 ± 1.6, 25.79 ± 1.76, 8.07 ± 11.49) followed by Augmentin (28.29 ± 1.33, 22.64 ± 1.82, 17.43 ± 1.55) Ofloxacin (26.57 ± 2.02, 20.79 ± 2.75, 16.21 ± 1.19) while the lowest values were obtained for Erythromycin (26.64 ± 1.49, 20.29 ± 1.49, 16.29 ± 1.33) at different dilution factor (10⁻¹, 10⁻², 10⁻³) respectively. The isolates from goat and cattle were all susceptible to Augmentin at the three different dilution factors. Some goat isolates are intermediate to Ciprofloxacin and Erythromycin at 10⁻² and 10⁻³, while resistance to Ciprofloxacin at 10⁻³ dilution factor. Ciprofloxacin and Ofloxacin at the dilution factors of 10⁻³ and 10⁻¹ for some cattle isolate and resistance were observed for Ofloxacin and Erythromycin at dilution of 10⁻³. These results indicate the susceptibilities and the antimicrobial resistance to commonly used antibiotic.

Keywords: antibiotic susceptibility, bacteria, cattle, goat, identification

Procedia PDF Downloads 122
2893 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 68
2892 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics

Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco

Abstract:

Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.

Keywords: biomaterials, characterization techniques, natural resource, starch

Procedia PDF Downloads 323
2891 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms

Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani

Abstract:

Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.

Keywords: face recognition, body-worn cameras, deep learning, person identification

Procedia PDF Downloads 161
2890 Development of an Innovative Mobile Phone Application for Employment of Persons With Disabilities Toward the Inclusive Society

Authors: Marutani M, Kawajiri H, Usui C, Takai Y, Kawaguchi T

Abstract:

Background: To build the inclusive society, the Japanese government provides “transition support for employment system” for Persons with Disabilities (PWDs). It is, however, difficult to provide appropriate accommodations due to their changeable health conditions. Mobile phone applications (App) are useful to monitor their health conditions and their environments, and effective to improve reasonable accommodations for PWDs. Purpose: This study aimed to develop an App that PWDs input their self-assessment and make their health conditions and environment conditions visible. To attain the goal, we investigated the items of the App for the first step. Methods: Qualitative and descriptive design was used for this study. Study participants were recruited by snowball sampling in July and August 2023. They had to have had minimum of five-years of experience to support PWDs’ employment. Semi-structured interviews were conducted on their assessment regarding PWDs’ conditions of daily activities, their health conditions, and living and working environment. Verbatim transcript was created from each interview content. We extracted the following items in tree groups from each verbatim transcript: daily activities, health conditions, and living and working. Results: Fourteen participants were involved (average years of experience: 10.6 years). Based on the interviews, tree item groups were enriched. The items of daily activities were divided into fifty-five. The example items were as follows: “have meals on one’s style” “feel like slept well” “wake-up time, bedtime, and mealtime are usually fixed.” “commute to the office and work without barriers.” Thirteen items of health conditions were obtained like “feel no anxiety” “relieve stress” “focus on work and training” “have no pain” “have the physical strength to work for one day.” The items of categories of living and working environments were divided into fifteen-two. The example items were as follows: “have no barrier in home” “have supportive family members” “have time to take medication on time while at work” “commute time is just right” “people at the work understand the symptoms” “room temperature and humidity are just right” “get along well with friends in my own way.” The participants also mentioned the styles to input self-assessment like that a face scale would be preferred to number scale. Conclusion: The items were enriched existent paper-based assessment items in terms of living and working environment because those were obtained from the perspective of PWDs. We have to create the app and examine its usefulness with PWDs toward inclusive society.

Keywords: occupational health, innovatiove tool, people with disability, employment

Procedia PDF Downloads 54
2889 Stature Prediction from Anthropometry of Extremities among Jordanians

Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious

Abstract:

Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.

Keywords: foot index, foot length, hand length, humerus length, stature

Procedia PDF Downloads 303
2888 A Constrained Model Predictive Control Scheme for Simultaneous Control of Temperature and Hygrometry in Greenhouses

Authors: Ayoub Moufid, Najib Bennis, Soumia El Hani

Abstract:

The objective of greenhouse climate control is to improve the culture development and to minimize the production costs. A greenhouse is an open system to external environment and the challenge is to regulate the internal climate despite the strong meteorological disturbances. The internal state of greenhouse considered in this work is defined by too relevant and coupled variables, namely inside temperature and hygrometry. These two variables are chosen to describe the internal state of greenhouses due to their importance in the development of plants and their sensitivity to external climatic conditions, sources of weather disturbances. A multivariable model is proposed and validated by considering a greenhouse as black-box system and the least square method is applied to parameters identification basing on collected experimental measures. To regulate the internal climate, we propose a Model Predictive Control (MPC) scheme. This one considers the measured meteorological disturbances and the physical and operational constraints on the control and state variables. A successful feasibility study of the proposed controller is presented, and simulation results show good performances despite the high interaction between internal and external variables and the strong external meteorological disturbances. The inside temperature and hygrometry are tracking nearly the desired trajectories. A comparison study with an On/Off control applied to the same greenhouse confirms the efficiency of the MPC approach to inside climate control.

Keywords: climate control, constraints, identification, greenhouse, model predictive control, optimization

Procedia PDF Downloads 204
2887 Terraria AI: YOLO Interface for Decision-Making Algorithms

Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado

Abstract:

This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.

Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5

Procedia PDF Downloads 93
2886 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population

Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya

Abstract:

Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.

Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population

Procedia PDF Downloads 297
2885 Cheiloscopy and Dactylography in Relation to ABO Blood Groups: Egyptian vs. Malay Populations

Authors: Manal Hassan Abdel Aziz, Fatma Mohamed Magdy Badr El Dine, Nourhan Mohamed Mohamed Saeed

Abstract:

Establishing association between lip print patterns and those of fingerprints as well as blood groups is of fundamental importance in the forensic identification domain. The first aim of the current study was to determine the prevalent types of ABO blood groups, lip prints and fingerprints patterns in both studied populations. Secondly, to analyze any relation found between the different print patterns and the blood groups, which would be valuable in identification purposes. The present study was conducted on 60 healthy volunteers, (30 males and 30 females) from each of the studied population. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Michael Kuchen’s classification, respectively. The results show that the ulnar loop was the most frequent among both populations. Blood group A was the most frequent among Egyptians, while blood groups O and B were the predominant among Malaysians. Significant relations were observed between lip print patterns and fingerprint (in the second quadrant for Egyptian males and the first one for Malaysian). For Malaysian females, a statistically significant association was proved in the fourth quadrant. Regarding the blood groups, 89.5% of ulnar loops were significantly related to blood group A among Egyptian males. The results proved an association between the fingerprint pattern and the lip prints, as well as between the ABO blood group and the pattern of fingerprints. However, further researches with larger sample sizes need to be directed to approve the current results.

Keywords: ABO, cheiloscopy, dactylography, Egyptians, Malaysians

Procedia PDF Downloads 217
2884 Extended Boolean Petri Nets Generating N-Ary Trees

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.

Keywords: marking vector, n-vector, petri nets, reachability

Procedia PDF Downloads 80
2883 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 153
2882 Effect of Formulated Insect Enriched Sprouted Soybean /Millet Based Food on Gut Health Markers in Albino Wistar Rats

Authors: Gadanya, A.M., Ponfa, S., Jibril, M.M., Abubakar, S. M.

Abstract:

Background: Edible insects such as grasshopper are important sources of food for humans, and have been consumed as traditional foods by many indigenous communities especially in Africa, Asia, and Latin America. These communities have developed their skills and techniques in harvesting, preparing, consuming, and preserving edible insects, widely contributing to the role played by the use of insects in human nutrition. Aim/ objective: This study was aimed at determining the effect of insect enriched sprouted soyabean /millet based food on some gut health markers in albino rats. Methods. Four different formulations of Complementary foods (i.e Complementary Food B (CFB): sprouted millet (SM), Complementary Food C (CFC): sprouted soyabean (SSB), Complementary Food D (CFD): sprouted soybean and millet (SSBM) in a ratio of (50:50) and Complementary Food E (CFE): insect (grasshopper) enriched sprouted soybean and millet (SSBMI) in a ratio of (50:25:25)) were prepared. Proximate composition and short chain fatty acid contents were determined. Thirty albino rats were divided into5 groups of six rats each. Group 1(CDA) were fed with basal diet and served as a control group, while groups 2,3,4 and 5 were fed with the corresponding complimentary foods CFB, CFC, CFD and CFE respectively daily for four weeks. Concentrations of fecal protein, serum total carotenoids and nitric oxide were determined. DNA extraction for molecular isolation and characterization were carried out followed by PCR, the use of mega 11 software and NCBI blast for construction of the phylogenetic tree and organism identification respectively. Results: Significant increase (P<0.05) in percentage ash, fat, protein and moisture contents, as well as short chain fatty acid (acetate, butyrate and propionate) concentrations were recorded in the insect enriched sprouted composite food (CFE) when compared with the CFA, CFB, CFC and CFD composite food. Faecal protein, carotenoid and nitric oxide concentrations were significantly lower (P>0.05) in group 5 in comparison to groups 1to 4. Ruminococcus bromii and Bacteroidetes were molecularly isolated and characterized by 16s rRNA from the sprouted millet/sprouted soybean and the insect enriched sprouted soybean/sprouted millet based food respectively. The presence of these bacterial strains in the feaces of the treated rats is an indication that the gut of the treated rats is colonized by good gut bacteria, hence, an improved gut health. Conclusion: Insect enriched sprouted soya bean/sprouted millet based complementary diet showed a high composition of ash, fat, protein and fiber. Thus, could increase the availability of short chain fatty acids whose role to the host organism cannot be overemphasized. It was also found to have decrease the level of faecal protein, carotenoid and nitric oxide in the serum which is an indication of an improvement in the immune system function.

Keywords: gut-health, insect, millet, soybean, sprouted

Procedia PDF Downloads 67
2881 DNA Barcoding Application in Study of Icthyo- Biodiversity in Rivers of Pakistan

Authors: Asma Karim

Abstract:

Fish taxonomy plays a fundamental role in the study of biodiversity. However, traditional methods of fish taxonomy rely on morphological features, which can lead to confusion due to great similarities between closely related species. To overcome this limitation, modern taxonomy employs DNA barcoding as a species identification method. This involves using a short standardized mitochondrial DNA region as a barcode, specifically a 658 base pair fragment near the 5′ ends of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, to exploit the diversity in this region for identification of species. To test the effectiveness and reliability of DNA barcoding, 25 fish specimens from nine different fish species found in various rivers of Pakistan were identified morphologically using a dichotomous key at the start of the study. Comprising nine freshwater fish species, including Mystus cavasius, Mystus bleekeri, Osteobrama cotio, Labeo rohita, Labeo culbasu, Labeo gonius, Cyprinus carpio, Catla catla and Cirrhinus mrigala from different rivers of Pakistan were used in the present study. DNA was extracted from one of the pectoral fins and a partial sequence of CO1 gene was amplified using the conventional PCR method. Analysis of the barcodes confirmed that genetically identified fishes were the same as those identified morphologically at the beginning of the study. The sequences were also analyzed for biodiversity and phylogenetic studies. Based on the results of the study, it can be concluded that DNA barcoding is an effective and reliable method for studying biodiversity and conducting phylogenetic analysis of different fish species in Pakistan.

Keywords: DNA barcoding, fresh water fishes, taxonomy, biodiversity, Pakistan

Procedia PDF Downloads 106
2880 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 120
2879 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens

Authors: Anupalli Roja Rani, Saraswathi Jaggali

Abstract:

Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.

Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy

Procedia PDF Downloads 499
2878 Joint Path and Push Planning among Moveable Obstacles

Authors: Victor Emeli, Akansel Cosgun

Abstract:

This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

Keywords: motion planning, path planning, push planning, robot navigation

Procedia PDF Downloads 161
2877 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions

Authors: Vivian Wu

Abstract:

During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.

Keywords: apis mellifera, drone, flight behavior, weather, RFID

Procedia PDF Downloads 78
2876 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique

Authors: Yeliz Karaca, Rana Karabudak

Abstract:

Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.

Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques

Procedia PDF Downloads 168
2875 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 40
2874 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 36
2873 Interior Noise Reduction of Construction Equipment Vehicle

Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke

Abstract:

One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.

Keywords: interior noise, noise reduction, CEV, noise source identification

Procedia PDF Downloads 44