Search results for: sandwich structure composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9423

Search results for: sandwich structure composite

8553 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel

Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.

Keywords: particles, stable dispersion, composite coatings, corrosion protection

Procedia PDF Downloads 175
8552 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall

Authors: Hamid Nikzad, Shinta Yoshitomi

Abstract:

In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 158
8551 Hotel and Service Industry in USA: Is It Leveraged? Case Study of Seven Important Hotel Chains

Authors: Azadeh Shahbazi

Abstract:

This study tries to find out the determinants of capital structure in hotel industry in 7 important hotel chains in USA within the period of 12 years of 2000 to 2012. The study is used a panel pooled regression to realize the relation among different variables. Results show that the variables which could make changes in the capital structure of firms are Non-Debt Tax Shield and Tangibility.

Keywords: capital structure, service industry, hospitality, finance

Procedia PDF Downloads 471
8550 Multi-Walled Carbon Nanotubes as Nucleating Agents

Authors: Rabindranath Jana, Plabani Basu, Keka Rana

Abstract:

Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.

Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation

Procedia PDF Downloads 496
8549 The Relationship between Creative Imagination and Curriculum

Authors: Faride Hashemiannejad, Shima Oloomi

Abstract:

Imagination is one of the important elements of creative thinking which as a skill needs attention by the educational system. Although most students learn reading, writing, and arithmetic skills well, they lack high level thinking skills like creative thinking. Therefore, in the information age and in the beginning of entry to knowledge-based society, the educational system needs to think over its goals and mission, and concentrate on creativity-based curriculum. From among curriculum elements-goals, content, method and evaluation “method” is a major domain whose reform can pave the way for fostering imagination and creativity. The purpose of this study was examining the relationship between creativity development and curriculum. Research questions were: (1) is there a relationship between the cognitive-emotional structure of the classroom and creativity development? (2) Is there a relationship between the environmental-social structure of the classroom and creativity development? (3) Is there a relationship between the thinking structure of the classroom and creativity development? (4) Is there a relationship between the physical structure of the classroom and creativity development? (5) Is there a relationship between the instructional structure of the classroom and creativity development? Method: This research is a applied research and the research method is Correlational research. Participants: The total number of participants in this study included 894 students from High school through 11th grade from seven schools of seven zones in Mashad city. Sampling Plan: Sampling was selected based on Random Multi State. Measurement: The dependent measure in this study was: (a) the Test of Creative Thinking, (b) The researcher-made questionnaire includes five fragments, cognitive, emotional structure, environmental social structure, thinking structure, physical structure, and instructional structure. The Results Show: There was significant relationship between the cognitive-emotional structure of the classroom and student’s creativity development (sig=0.139). There was significant relationship between the environmental-social structure of the classroom and student’s creativity development (sig=0.006). There was significant relationship between the thinking structure of the classroom and student’s creativity development (sig=0.004). There was not significant relationship between the physical structure of the classroom and student’s creativity development (sig=0.215). There was significant relationship between the instructional structure of the classroom and student’s creativity development (sig=0.003). These findings denote if students feel secure, calm and confident, they can experience creative learning. Also the quality of coping with students’ questions, imaginations and risks can influence on their creativity development.

Keywords: imagination, creativity, curriculum, bioinformatics, biomedicine

Procedia PDF Downloads 480
8548 Enhanced Photocatalytic H₂ Production from H₂S on Metal Modified Cds-Zns Semiconductors

Authors: Maali-Amel Mersel, Lajos Fodor, Otto Horvath

Abstract:

Photocatalytic H₂ production by H₂S decomposition is regarded to be an environmentally friendly process to produce carbon-free energy through direct solar energy conversion. For this purpose, sulphide-based materials, as photocatalysts, were widely used due to their excellent solar spectrum responses and high photocatalytic activity. The loading of proper co-catalysts that are based on cheap and earth-abundant materials on those semiconductors was shown to play an important role in the improvement of their efficiency. In this research, CdS-ZnS composite was studied because of its controllable band gap and excellent performance for H₂ evolution under visible light irradiation. The effects of the modification of this photocatalyst with different types of materials and the influence of the preparation parameters on its H₂ production activity were investigated. The CdS-ZnS composite with an enhanced photocatalytic activity for H₂ production was synthesized from ammine complexes. Two types of modification were used: compounds of Ni-group metals (NiS, PdS, and Pt) were applied as co-catalyst on the surface of CdS-ZnS semiconductor, while NiS, MnS, CoS, Ag₂S, and CuS were used as a dopant in the bulk of the catalyst. It was found that 0.1% of noble metals didn’t remarkably influence the photocatalytic activity, while the modification with 0.5% of NiS was shown to be more efficient in the bulk than on the surface. The modification with other types of metals results in a decrease of the rate of H₂ production, while the co-doping seems to be more promising. The preparation parameters (such as the amount of ammonia to form the ammine complexes, the order of the preparation steps together with the hydrothermal treatment) were also found to highly influence the rate of H₂ production. SEM, EDS and DRS analyses were made to reveal the structure of the most efficient photocatalysts. Moreover, the detection of the conduction band electron on the surface of the catalyst was also investigated. The excellent photoactivity of the CdS-ZnS catalysts with and without modification encourages further investigations to enhance the hydrogen generation by optimization of the reaction conditions.

Keywords: H₂S, photoactivity, photocatalytic H₂ production, CdS-ZnS

Procedia PDF Downloads 131
8547 Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers for Lithium Ion Battery Application

Authors: Umran Kurtan, Hamide Aydin, Sevim Unugur Celik, Ayhan Bozkurt

Abstract:

In the present work, novel hBN/polyacrylonitrile composite nanofibers were produced via electrospinning approach and loaded with the electrolyte for rechargeable lithium-ion battery applications. The electrospun nanofibers comprising various hBN contents were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The influence of hBN/PAN ratios onto the properties of the porous composite system, such as fiber diameter, porosity, and the liquid electrolyte uptake capability were systematically studied. Ionic conductivities and electrochemical characterizations were evaluated after loading electrospun hBN/PAN composite nanofiber with liquid electrolyte, i.e., 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). The electrolyte loaded nanofiber has a highest ionic conductivity of 10−3 S cm⁻¹ at room temperature. According to cyclic voltammetry (CV) results it exhibited a high electrochemical stability window up to 4.7 V versus Li+/Li. Li//10 wt% hBN/PAN//LiCO₂ cell was produced which delivered high discharge capacity of 144 mAhg⁻¹ and capacity retention of 92.4%. Considering high safety and low cost properties of the resulting hBN/PAN fiber electrolytes, these materials can be suggested as potential separator materials for lithium-ion batteries.

Keywords: hexagonal boron nitride, polyacrylonitrile, electrospinning, lithium ion battery

Procedia PDF Downloads 148
8546 Single-Element Simulations of Wood Material in LS-DYNA

Authors: Ren Zuo Wang

Abstract:

In this paper, in order to investigate the behavior of the wood structure, the non-linearity of wood material model in LS-DYNA is adopted. It is difficult and less efficient to conduct the experiment of the ancient wood structure, hence LS-DYNA software can be used to simulate nonlinear responses of ancient wood structure. In LS-DYNA software, there is material model called *MAT_WOOD or *MAT_143. This model is to simulate a single-element response of the wood subjected to tension and compression under the parallel and the perpendicular material directions. Comparing with the exact solution and numerical simulations results using LS-DYNA, it demonstrates the accuracy and the efficiency of the proposed simulation method.

Keywords: LS-DYNA, wood structure, single-element simulations, MAT_143

Procedia PDF Downloads 653
8545 Development of Light-Weight Fibre-Based Materials for Building Envelopes

Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot

Abstract:

Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even if their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of thin-walled fibre-cement composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even if these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.

Keywords: fibre-cement composite, granulated expanded glass, light-weighing

Procedia PDF Downloads 291
8544 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller

Authors: Alireza Dantism

Abstract:

Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.

Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller

Procedia PDF Downloads 97
8543 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 204
8542 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Authors: A. Yonetken, A. Erol, M. Cakmakkaya

Abstract:

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.

Keywords: composite, high temperature, intermetallic, sintering

Procedia PDF Downloads 407
8541 Mechanical and Physical Properties of Wood Composite Panel from Recycled Plastic and Sawdust of Cordia alliodora (Ruiz and Pav.)

Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba, Usman Shehu

Abstract:

Wood plastic composite boards were made from sawn dust of Cordia alliodora and recycled polyethylene at a mixing ratio of 1.5ratio1, 2.5ratio1 and 3.5ratio1 and nominal densities of 600 kilograms per meter cube, 700 kilograms per meter cube, and 800 kilograms per meter cube, The material was hot pressed at 150-degree celsius to produce board of 250 millimeter by 250 millimeter by 6 millimeter of which 18 boards were produced. The experiment was subject to 3 by 3 factorial experiments in Completely Randomised Design (CRD). Analysis of variance and Duncan Multiple Range Test (DMRT) was adopted by 3 by 3 at 5 percent probability. The strength properties of the boards such as modulus of rupture (MOR) and modulus of elasticity (MOE) were investigated, while the dimensional properties of the board such as the water absorption (WA) and thickness swelling (TS) were as well determined after 12hrs and 24hrs of water immersion. The result showed that the mean values of MOE ranged from 9100.73 Newtons per square millimeters to 12086.96 Newtons per square millimeters while MOR values ranged from 48.26 Newtons per square millimeters to 103.09 Newtons per square millimeters. The values of WA and TS after 12hrs immersion ranged from 1.21 percent to 1.56 percent and 0.00 percent to 0.13 percent, respectively. The values of WA and TS after 24hrs of water immersion ranged from 1.66 percent to 2.99 percent and 0.02 percent to 0.18 percent, respectively. The higher the value of board density and the high-density polythene /sawdust ratio, the stronger, the stiffer and more dimensionally stable the wood plastic composite boards obtained. In addition, as the density of the board increases, the strength property of the boards increases. Hence the board will be suitable for internal construction materials.

Keywords: wood Plastic composite, modulus of rupture, modulus of elasticity, dimensional stability

Procedia PDF Downloads 178
8540 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
8539 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid

Authors: Byung Il You, Ryun Oh, Gyo Woo Lee

Abstract:

Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).

Keywords: manhole lid, iron frame, structural design, computer simulation

Procedia PDF Downloads 275
8538 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.

Keywords: electrostatic charging, hybrid fiber composites, recycling, short fiber composites

Procedia PDF Downloads 128
8537 Engineered Biopolymers as Novel Sustainable Resin Binder for Wood Composites

Authors: Somaieh Salehpour, Douglas Ireland, Chris Anderson, Charles Markessini

Abstract:

Over the last few years, advancements have been made around improving sustainability for wood composite boards. One of the last and most challenging sustainability hurdles is finding a viable alternative to petroleum-based resin binders. In today’s market, no longer is formaldehyde emission control sufficient to meet the requirements of many architects and end-use consumers. Even the use of highly reactive isocyanates is considered by many as not sustainable enough since these chemicals are manufactured from classical fossil fuel sources. The emergence of biopolymers specifically engineered for usage as wood composite binders has been successfully demonstrated in this paper as a viable option towards a truly renewable wood composite board. Recent technology advancements driven by EcoSynthetix and CHIMAR have exploited the advantages of using an engineered biopolymer. The evidence shows that this renewable technology has the potential to be used as a partial up to full replacement of classical formaldehyde technologies. Numerous trials, both in the lab and at industrial scale, have shown that a renewable binder of the proposed technology can produce a commercially viable board in a traditional industrial setting. The ultimate goal of this work is to provide evidence that a sustainable binder alternative can be used to make a commercial board while at the same time improving the total cost of manufacturing.

Keywords: no added formaldehyde, renewable, biopolymers, sustainable wood composites, engineered biopolymers

Procedia PDF Downloads 400
8536 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites

Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg

Abstract:

The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.

Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength

Procedia PDF Downloads 128
8535 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 44
8534 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 257
8533 A Comparative Study on Creep Modeling in Composites

Authors: Roham Rafiee, Behzad Mazhari

Abstract:

Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.

Keywords: creep, comparative study, modeling, composite materials

Procedia PDF Downloads 441
8532 Topology Optimization of Composite Structures with Material Nonlinearity

Authors: Mengxiao Li, Johnson Zhang

Abstract:

Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.

Keywords: topology optimization, material composition, nonlinear modeling, hardening rules

Procedia PDF Downloads 482
8531 Comparing Community Detection Algorithms in Bipartite Networks

Authors: Ehsan Khademi, Mahdi Jalili

Abstract:

Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.

Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks

Procedia PDF Downloads 625
8530 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection

Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi

Abstract:

The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.

Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure

Procedia PDF Downloads 280
8529 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System

Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang

Abstract:

Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.

Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS

Procedia PDF Downloads 141
8528 Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)

Authors: M. Şahi̇n, E. Erdem, M. Saçak

Abstract:

In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite.

Keywords: clay, composite, conducting polymer, poly(o-anisidine)

Procedia PDF Downloads 325
8527 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite

Authors: Tigist Girma Kedane

Abstract:

The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.

Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite

Procedia PDF Downloads 60
8526 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating

Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei

Abstract:

The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.

Keywords: corrosion, coating, carbon nanotubes, degradation

Procedia PDF Downloads 159
8525 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation

Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell

Abstract:

Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.

Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models

Procedia PDF Downloads 146
8524 Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol

Authors: Ali Garba Danjani, Abdulrasheed Halliru Usman

Abstract:

Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength.

Keywords: chitosan, polymeric nanocomposites, antibacterial activity, polymer blend

Procedia PDF Downloads 100