Search results for: pressure flows
3854 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations
Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi
Abstract:
Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation
Procedia PDF Downloads 1793853 Potential Effects of Climate Change on Streamflow, Based on the Occurrence of Severe Floods in Kelantan, East Coasts of Peninsular Malaysia River Basin
Authors: Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Mohd. Khairul Amri Kamarudin, Azman Azid, Siti Humaira Haron, Muhammad Hafiz Md. Saad
Abstract:
Malaysia is a country in Southeast Asia that constantly exposed to flooding and landslide. The disaster has caused some troubles such loss of property, loss of life and discomfort of people involved. This problem occurs as a result of climate change leading to increased stream flow rate as a result of disruption to regional hydrological cycles. The aim of the study is to determine hydrologic processes in the east coasts of Peninsular Malaysia, especially in Kelantan Basin. Parameterized to account for the spatial and temporal variability of basin characteristics and their responses to climate variability. For hydrological modeling of the basin, the Soil and Water Assessment Tool (SWAT) model such as relief, soil type, and its use, and historical daily time series of climate and river flow rates are studied. The interpretation of Landsat map/land uses will be applied in this study. The combined of SWAT and climate models, the system will be predicted an increase in future scenario climate precipitation, increase in surface runoff, increase in recharge and increase in the total water yield. As a result, this model has successfully developed the basin analysis by demonstrating analyzing hydrographs visually, good estimates of minimum and maximum flows and severe floods observed during calibration and validation periods.Keywords: east coasts of Peninsular Malaysia, Kelantan river basin, minimum and maximum flows, severe floods, SWAT model
Procedia PDF Downloads 2613852 Increasing Prevalence of CVD and Its Risk Factors in India: A Review
Authors: Deepa Shokeen, Bani Tamber Aeri
Abstract:
Non-communicable diseases in general and cardiovascular diseases (CVD) in particular are a big cause of concern worldwide especially in fast growing economy like India. CVD is one of the leading causes of deaths in India. Risk factors for cardiovascular disease are now significant in all populations. At least one-third of all CVD is attributable to five risk factors: tobacco use, alcohol use, high blood pressure, high cholesterol and obesity. Methods: This article aspires to collate data gathered by relevant studies conducted after year 2000 and provide an overview of the prevalence of CVD in India and worldwide. Results: Studies show an increased prevalence of cardiovascular risk factors in India as compared to other developing and developed countries with recent trends showing incidence in younger age group. It is seen to affect almost all sections of the society from young to old and most affluent to least affluent. High blood pressure, high cholesterol, tobacco and alcohol use, as well as low vegetable and fruit intake, already figure among the top risk factors. Conclusion: The prevalence of risk factors associated with CVD has increased and will keep on increasing in India as indicated by studies in the last decade and as predicted by the projections for future estimates. Some major risks are modifiable in that they can be prevented, treated, and controlled. There are considerable health benefits at all ages, for both men and women, in stopping smoking, reducing cholesterol and blood pressure, eating a healthy diet and increasing physical activity.Keywords: prevalence, cardiovascular disease, India, risk factors
Procedia PDF Downloads 5133851 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles
Authors: Jafar Mortadha, Imran Qureshi
Abstract:
This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes
Procedia PDF Downloads 2943850 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels
Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He
Abstract:
The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure
Procedia PDF Downloads 1343849 The Issues of Irrigation and Drainage in Kebbi State and Their Effective Solution for a Sustainable Agriculture in Kebbi State, Nigeria
Authors: Mumtaz Ahmed Sohag, Ishaq Ahmed Sohag
Abstract:
Kebbi State, located in the Nort-West of Nigeria, is rich in water resources as the major rivers viz. Niger and Rima irrigate a vast majority of land. Besides, there is significant amount of groundwater, which farmers use for agriculture purpose. The groundwater is also a major source of agricultural and domestic water as wells are installed in almost all parts of the region. Although Kebbi State is rich in water, however, there are some pertinent issues which are hampering its agricultural productivity. The low lands (locally called Fadama), has spread out to a vast area. It is inundated every year during the rainy season which lasts from June to September every year. The farmers grow rice during the rainy season when water is standing. They cannot do further agricultural activity for almost two months due to high standing water. This has resulted in widespread waterlogging problem. Besides, the impact of climate change is resulting in rapid variation in river/stream flows. The information about water bodies regarding the availability of water for agricultural and other uses and the behavior of rivers at different flows is seldom available. Furthermore, sediment load (suspended and bedload) is not measured due to which land erosion cannot be countered effectively. This study, carried out in seven different irrigation regions of Kebbi state, found that diversion structures need to be constructed at some strategic locations for the supply of surface water to the farmers. The water table needs to be lowered through an effective drainage system. The monitoring of water bodies is crucial for sound data to help efficient regulation and management of water. Construction of embankments is necessary to control frequent floods in the rivers of Niger and Rima. Furthermore, farmers need capacity and awareness for participatory irrigation management.Keywords: water bodies, floods, agriculture, waterlogging
Procedia PDF Downloads 2373848 Effects of Forest Bathing on Cardiovascular and Metabolic Parameters in Middle-Aged Males
Authors: Qing Li, Maiko Kobayashi, Shigeyoshi Kumeda, Hiroko Ochiai, Toshiya Ochiai, Takashi Miura, Takahide Kagawa, Michiko Imai, Toshiaki Otsuka, Tomoyuki Kawada
Abstract:
In the present study, we investigated the effects of a forest bathing program on cardiovascular and metabolic parameters. Nineteen healthy male subjects (mean age: 51.3 ± 8.8 years) were selected after obtaining informed consent. These subjects took day trips to a forest park named Akasawa Shizen Kyuyourin, Agematsu, Nagano Prefecture (situated in central Japan), and to an urban area of Nagano Prefecture as a control in August 2015. On both trips, they walked 2.6 km for 80 min each in the morning and afternoon on Saturdays. Blood and urine were sampled in the morning before and after each trip. Cardiovascular and metabolic parameters were measured. Blood pressure and pulse rate were measured by an ambulatory automatic blood pressure monitor. The Japanese version of the profile of mood states (POMS) test was conducted before, during and after the trips. Ambient temperature and humidity were monitoring during the trips. The forest bathing program significantly reduced pulse rate, and significantly increased the score for vigor and decreased the scores for depression, fatigue, and confusion in the POMS test. The levels of urinary noradrenaline and dopamine after forest bathing were significantly lower than those after urban area walking, suggesting the relaxing effect of the forest bathing program. The level of adiponectin in serum after the forest bathing program was significantly greater than that after urban area walking. There was no significant difference in blood pressure between forest and urban area trips during the trips.Keywords: ambient temperature, blood pressure, forest bathing, forest therapy, human health, POMS, pulse rate
Procedia PDF Downloads 4363847 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect
Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila
Abstract:
Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.Keywords: perovskite, PP-PW method, elastic constants, electronic band structure
Procedia PDF Downloads 4353846 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation
Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen
Abstract:
Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration
Procedia PDF Downloads 1333845 Active Abdominal Compression Device for Treatment of Orthostatic Hypotension
Authors: Vishnu Emani, Andreas Escher, Ellen Roche
Abstract:
Background: Orthostatic hypotension (OH) is an autonomic disorder marked by a sudden drop in blood pressure upon standing resulting from autonomic dysfunction. OH is especially prevalent in elderly populations, affecting more than 30% of Americans over the age of 70. OH is one of the most significant risk factors for accidental falls in elderly populations, making it a crucial focus for medical and device therapies. Pharmacologic therapy with midodrine and fludrocortisone may alleviate hypotension but have significant adverse side effects. Abdominal passive compression devices (binders) are more effective than lower extremity compression stockings at mitigating postural hypotension, by improving venous return to the heart. However, abdominal binders are difficult to don and uncomfortable to wear, leading to poor compliance. A disadvantage of passive compression devices is their inability to selectively compress during the crucial moment of standing. it have recently developed an active compression device that applies external pressure on the abdomen during transition from prone to supine position and conducted initial prototype testing. Methods: An active abdominal compression device was developed utilizing a simple, servo-driven strap-tightening mechanism to supply tension onto foam fabric, which applies pressure to the abdomen. Healthy volunteers (n=5) were utilized for prototype testing and were subjected to three conditions: no compression, passive compression (i.e. standard abdominal binder), and active compression (device prototype). Abdominal applied pressure during device activation was measured by strain-gauge manometer placed between the skin and binder. Systolic (SBP) and mean (MAP) arterial blood pressure was measured by standard blood pressure cuff in supine position followed by repeat measurements at 1 minute intervals for 5 minutes following upright position. A survey tool was administered to determine scores (1-10) for comfort and ease of donning abdominal binders. Results: Abdominal pressure increased from 0 to 15±3 mmHg upon device activation for both passive and active compression devices. During transition from supine to upright position, both active and passive compression devices demonstrated significantly higher MAP compared to the no-compression condition (67±4, 68±5, 62±5 respectively P<0.05), but there was no statistically significant difference in SBP or MAP when comparing active to passive compression. Active compression demonstrated significantly higher comfort scores (8.3±1) compared to passive compression (3.2±2) but lower when compared to no compression (10). Subjects universally reported that active compression device was easier to don compared to passive device. Conclusions: Active or passive abdominal compression prevents hypotension associated with postural changes. Active compression is associated with increased comfort and ease of donning compared to passive compression devices. Future trials are warranted to investigate the efficacy of our device in patients with OH.Keywords: orthostatic hypotension, compression binder, abdominal binder, active abdominal compression
Procedia PDF Downloads 233844 Partnering with Stakeholders to Secure Digitization of Water
Authors: Sindhu Govardhan, Kenneth G. Crowther
Abstract:
Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.Keywords: cyber security, shared responsibility, IIOT, threat modelling
Procedia PDF Downloads 753843 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values
Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne
Abstract:
Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil
Procedia PDF Downloads 2983842 Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field
Authors: P. I. Yachevskaya, S. A. Terentiev, M. S. Kuznetsov
Abstract:
Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h.Keywords: diamond, inclusions, temperature gradient, HPHT
Procedia PDF Downloads 5093841 Empirical Analysis of Velocity Behavior for Collaborative Robots in Transient Contact Cases
Authors: C. Schneider, M. M. Seizmeir, T. Suchanek, M. Hutter-Mironovova, M. Bdiwi, M. Putz
Abstract:
In this paper, a suitable measurement setup is presented to conduct force and pressure measurements for transient contact cases at the example of lathe machine tending. Empirical measurements were executed on a selected collaborative robot’s behavior regarding allowable operating speeds under consideration of sensor- and workpiece-specific factors. Comparisons between the theoretic calculations proposed in ISO/TS 15066 and the practical measurement results reveal a basis for future research. With the created database, preliminary risk assessment and economic assessment procedures of collaborative machine tending cells can be facilitated.Keywords: biomechanical thresholds, collaborative robots, force and pressure measurements, machine tending, transient contact
Procedia PDF Downloads 2413840 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold
Authors: Morteza Malek Yarand, Hadi Saebi Monfared
Abstract:
This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon
Procedia PDF Downloads 2723839 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 1523838 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 2313837 Antihypertensive Activity of Alcoholic Extract of Citrus Paradise Juice in One Clip One Kidney Hypertension Model in Rats
Authors: Lokesh Bhatt, Jayesh Rathod
Abstract:
Hypertension is one of the most prevalent cardiovascular disorder. It is responsible for several other cardiovascular disorders. Although many drugs are available for the treatment of hypertension, still a large population has uncontrolled blood pressure. Thus there is an unmet need for new therapeutic approaches for the same. Fruit juice of Citrus paradise contains several flavonoids with vasodilatory activity. We hypothesized that alcoholic extract of Citrus paradise, which contains flavonoids, might attenuate hypertension. The objective of the present study was to evaluate the antihypertensive activity of alcoholic extract of Citrus paradise fruit juice in rats. Hypertension was induced using one clip one kidney model in rats. The renal artery was occluded for 4 h after removal of one kidney. Once stabilized, the ganglionic blockade was performed followed by removal of the arterial clip from the kidney. Removal of clip resulted in an increase in blood pressure which is due to release of renin from the kidney. Alcoholic extract of Citrus paradise fruit juice was then administered at 50 mg/kg and 100 mg/kg dose by intravenous injection. Blood pressure was monitored continuously. Alcoholic extract of Citrus paradise fruit juice reduced hypertension in dose-dependent manner. Antihypertensive activity was found to be associated with vasodilation. The results of the present study showed antihypertensive potential of alcoholic extract of Citrus paradise fruit juice.Keywords: citrus paradise, alcoholic extract, one clip one kidney model, vasodilation
Procedia PDF Downloads 2863836 Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft
Authors: Mudassir Ghafoor, Irsalan Arif, Shuaib Salamat
Abstract:
This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct.Keywords: bump intake, boundary layer, computational fluid dynamics, diverter-less supersonic inlet
Procedia PDF Downloads 2423835 Technology Optimization of Compressed Natural Gas Home Fast Refueling Units
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Robert Strods, Adam Szurlej
Abstract:
Despіte all glоbal ecоnоmіc shіfts and the fact that Natural Gas іs recоgnіzed wоrldwіde as the maіn and the leadіng alternatіve tо оіl prоducts іn transpоrtatіоn sectоr, there іs a huge barrіer tо swіtch passenger vehіcle segment tо Natural gas - the lack оf refuelіng іnfrastructure fоr Natural Gas Vehіcles. Whіle іnvestments іn publіc gas statіоns requіre establіshed NGV market іn оrder tо be cоst effectіve, the market іs nоt there due tо lack оf refuelіng statіоns. The key tо sоlvіng that prоblem and prоvіdіng barrіer breakіng refuelіng іnfrastructure sоlutіоn fоr Natural Gas Vehіcles (NGV) іs Hоme Fast Refuelіng Unіts. Іt оperates usіng Natural Gas (Methane), whіch іs beіng prоvіded thrоugh gas pіpelіnes at clіents hоme, and electrіcіty cоnnectіоn pоіnt. Іt enables an envіrоnmentally frіendly NGV’s hоme refuelіng just іn mіnutes. The underlyіng technоlоgy іs a patented technоlоgy оf оne stage hydraulіc cоmpressоr (іnstead оf multіstage mechanіcal cоmpressоr technоlоgy avaіlable оn the market nоw) whіch prоvіdes the pоssіbіlіty tо cоmpress lоw pressure gas frоm resіdentіal gas grіd tо 200 bar fоr іts further usage as a fuel fоr NGVs іn the mоst ecоnоmіcally effіcіent and cоnvenіent fоr custоmer way. Descrіptіоn оf wоrkіng algоrіthm: Twо hіgh pressure cylіnders wіth upper necks cоnnected tо lоw pressure gas sоurce are placed vertіcally. Іnіtіally оne оf them іs fіlled wіth lіquіd and anоther оne – wіth lоw pressure gas. Durіng the wоrkіng prоcess lіquіd іs transferred by means оf hydraulіc pump frоm оne cylіnder tо anоther and back. Wоrkіng lіquіd plays a rоle оf pіstоns іnsіde cylіnders. Mоvement оf wоrkіng lіquіd іnsіde cylіnders prоvіdes sіmultaneоus suctіоn оf a pоrtіоn оf lоw pressure gas іntо оne оf the cylіnder (where lіquіd mоves dоwn) and fоrcіng оut gas оf hіgher pressure frоm anоther cylіnder (where lіquіd mоves up) tо the fuel tank оf the vehіcle / stоrage tank. Each cycle оf fоrcіng the gas оut оf the cylіnder rіses up the pressure оf gas іn the fuel tank оf a vehіcle wіth 2 cylіnders. The prоcess іs repeated untіl the pressure оf gas іn the fuel tank reaches 200 bar. Mоbіlіty has becоme a necessіty іn peоple’s everyday lіfe, whіch led tо оіl dependence. CNG Hоme Fast Refuelіng Unіts can become a part fоr exіstіng natural gas pіpelіne іnfrastructure and becоme the largest vehіcle refuelіng іnfrastructure. Hоme Fast Refuelіng Unіts оwners wіll enjоy day-tо-day tіme savіngs and cоnvenіence - Hоme Car refuelіng іn mіnutes, mоnth-tо-mоnth fuel cоst ecоnоmy, year-tо-year іncentіves and tax deductіbles оn NG refuelіng systems as per cоuntry, reduce CО2 lоcal emіssіоns, savіng cоsts and mоney.Keywords: CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), natural gas
Procedia PDF Downloads 2033834 Kannudi- A Reference Editor for Kannada (Based on OPOK! and OHOK! Principles, and Domain Knowledge)
Authors: Vishweshwar V. Dixit
Abstract:
Kannudi is a reference editor introducing a method of input for Kannada, called OHOK!, that is, Ottu Hāku Ottu Koḍu!. This is especially suited for pressure-sensitive input devices, though the current online implementation uses the regular mechanical keyboard. OHOK! has three possible modes, namely, sva-ottu (self-conjunct), kandante (as you see), and andante (as you say). It may be noted that kandante mode does not follow the phonetic order. However, this model may work well for those who are inclined to visualize as they type rather than vocalize the sounds. Kannudi also demonstrates how domain knowledge can be effectively used to potentially increase speed, accuracy, and user-friendliness. For example, selection of a default vowel, automatic shunyification, and arkification. Also implemented are four types of Deletes that are necessary for phono-syllabic languages like Kannada.Keywords: kannada, conjunct, reference editor, pressure input
Procedia PDF Downloads 923833 Effect of Copper Particle on the PD Characteristics in a Coaxial Duct with Mixture of SF6 (10%) and N2 (90%) Gases
Authors: B. Rajesh Kamath, J. Sundara Rajan, M. K. Veeraiah, M. Z. Kurian
Abstract:
Insulation performance of a gas insulated system is severely affected by particle contaminants. These metallic particles adversely affect the characteristics of insulating system. These particles can produce surface charges due to partial discharge activities. These particles which are free to move enhance the local electric fields. This paper deals with the influence of conducting particle placed in a co-axial duct on the discharge characteristics of gas mixtures. Co-axial duct placed in a high pressure chamber is used for the purpose. A gas pressure of 0.1, 0.2 and 0.3 MPa have been considered with a 10:90 SF6 and N2 gas mixtures. The 2D and 3D histograms of clean duct and duct with copper particle are discussed in this paper.Keywords: coaxial duct, gas insulated system, gas mixtures, metallic particle, partial discharges, histograms
Procedia PDF Downloads 3993832 Seal Capacity Evaluation by Using Mercury Injection Capillary Pressure Method Integrated with Petrographic Data: A Case Study in Green Dragon Oilfield Offshore Vietnam
Authors: Quoc Ngoc Phan, Hieu Van Nguyen, Minh Hong Nguyen
Abstract:
This study presents an integrated approach using Mercury Injection Capillary Pressure (MICP) and petrographic analysis to assess the seal quality of the inter-bedded shale formations which are considered the intra-formation top seals of hydrocarbon bearing zones in Green Dragon structure. Based on the hydrocarbon column height (HCH) at leak point derived from capillary pressure data, four seal types were identified. Furthermore, the results of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were interpreted to clarify the influence of clay minerals on seal capacity. The result of the study indicated that the inter-bedded shale formations are the good sealing quality with a majority of analyzed samples ranked type A and B seals in the sample set. Both seal types occurred mainly in mudstones with pore radius estimated less than 0.251 µm. Overall, type A and B seals contained a large amount of authigenic clay minerals such as illite, chlorite which showed the complexity of morphological arrangement in pore space. Conversely, the least common seal type C and D were presented in moderately compacted sandstones with more open pore radius. It is noticeable that there was a reduction of illite and chlorite in clay mineral fraction of these seal type. It is expected that the integrated analysis approach using Mercury Injection Capillary Pressure and petrographic data employed in this study can be applied to assess the sealing quality of future well sites in Green Dragon or other structures.Keywords: seal capacity, hydrocarbon height column, seal type, SEM, XRD
Procedia PDF Downloads 1593831 Evaluation of Zr/NH₄ClO₄ and Zr/KClO₄ Compositions for Development of Igniter for Ammonium Perchlorate and Hydroxyl-Terminated Polybutadiene Based Base Bleed System
Authors: Amir Mukhtar, Habib Nasir
Abstract:
To achieve an enhanced range of large calibre artillery a base bleed unit equipped with ammonium perchlorate and hydroxyl-terminated polybutadiene (AP/HTPB) based composite propellant grain is installed at the bottom of a projectile which produces jet of hot gasses and reduces base drag during flight of the projectile. Upon leaving the muzzle at very high muzzle velocity, due to sudden pressure drop, the propellant grain gets quenched. Therefore, base-bleed unit is equipped with an igniter to ensure ignition as well as reignition of the propellant grain. Pyrotechnic compositions based on Zr/NH₄ClO₄ and Zr/KClO₄ mixtures have been studied for the effect of fuel/oxidizer ratio and oxidizer type on ballistic properties. Calorific values of mixtures were investigated by bomb calorimeter, the average burning rate was measured by fuse wire technique at ambient conditions, and high-pressure closed vessel was used to record pressure-time profile, maximum pressure achieved (Pmax), time to achieve Pmax and differential pressure (dP/dt). It was observed that the 30, 40, 50 and 60 wt.% of Zr has a very significant effect on ballistic properties of mixtures. Compositions with NH₄ClO₄ produced higher values of Pmax, dP/dt and Calorific value as compared to Zr/KClO₄ based mixtures. Composition containing KClO₄ comparatively produced higher burning rate and maximum burning rate was recorded at 8.30 mm/s with 60 wt.% Zr in Zr/KClO₄ pyrotechnic mixture. Zr/KClO₄ with 50 wt. % of Zr was tests fired in igniter assembly by electric initiation method. Igniter assembly was test fired several times and average burning time of 3.5 sec with igniter mass burning rate of 6.85 g/sec was recorded. Igniter was finally fired on static and dynamic level with base bleed unit which gave successful ignition to the base bleed grain and extended range was achieved with 155 mm artillery projectile.Keywords: base bleed, closed vessel, igniter, zirconium
Procedia PDF Downloads 1643830 Assessment of Rock Masses Performance as a Support of Lined Rock Cavern for Isothermal Compressed Air Energy Storage
Authors: Vathna Suy, Ki-Il Song
Abstract:
In order to store highly pressurized gas such as an isothermal compressed air energy storage, Lined Rock Caverns (LRC) are constructed underground and supported by layers of concrete, steel and rock masses. This study aims to numerically investigate the performance of rock masses which serve as a support of Lined Rock Cavern subjected to high cyclic pressure loadings. FLAC3D finite different software is used for the simulation since the software can effectively model the behavior of concrete lining and steel plate with its built-in structural elements. Cyclic pressure loadings are applied onto the inner surface of the cavern which then transmitted to concrete, steel and eventually to the surrounding rock masses. Changes of stress and strain are constantly monitored throughout all the process of loading operations. The results at various monitoring locations are then extracted and analyzed to assess the response of the rock masses, specifically on its ability to absorb energy during loadings induced by the changes of cyclic pressure loadings inside the cavern. By analyzing the obtained data of stress-strain relation and taking into account the behavior of materials under the effect of strain-dependency, conclusions on the performance of rock masses subjected to high cyclic loading conditions are drawn.Keywords: cyclic loading, FLAC3D, lined rock cavern (LRC), strain-dependency
Procedia PDF Downloads 2443829 Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud
Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan
Abstract:
For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis
Procedia PDF Downloads 2853828 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia
Authors: Sawarni Hasibuan, Rudi Effendi Listyanto
Abstract:
The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency
Procedia PDF Downloads 3223827 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass
Authors: Won-Gon Kim
Abstract:
A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics
Procedia PDF Downloads 2423826 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve
Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao
Abstract:
An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing
Procedia PDF Downloads 3053825 Increasing of Resiliency by Using Gas Storage in Iranian Gas Network
Authors: Mohsen Dourandish
Abstract:
Iran has a huge pipeline network in every state of country which is the longest and vastest pipeline network after Russia and USA (360,000 Km high pressure pipelines and 250,000 Km distribution networks). Furthermore in recent years National Iranian Gas Company is planning to develop natural gas network to cover all cities and villages above 20 families, in a way that 97 percent of Iran population will be gas consumer by 2020. In this condition, network resiliency will be the first priority of NIGC and due to that several planning for increasing resiliency of gas network is under construction. The most important strategy of NIGC is converting tree form pattern network to loop gas networks and developing underground gas storage near main gas consuming centers. In this regard NIGC is planning for construction of over 3500 km high-pressure pipeline and also 10 TCM gas storage capacities in UGSs.Keywords: Iranian gas network, peak shaving, resiliency, underground gas storage
Procedia PDF Downloads 325