Search results for: parallel regression analysis
29098 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model
Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele
Abstract:
The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.
Procedia PDF Downloads 6629097 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study
Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun
Abstract:
Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence
Procedia PDF Downloads 18629096 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission
Procedia PDF Downloads 19729095 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce
Procedia PDF Downloads 36829094 Association of the Time in Targeted Blood Glucose Range of 3.9–10 Mmol/L with the Mortality of Critically Ill Patients with or without Diabetes
Authors: Guo Yu, Haoming Ma, Peiru Zhou
Abstract:
BACKGROUND: In addition to hyperglycemia, hypoglycemia, and glycemic variability, a decrease in the time in the targeted blood glucose range (TIR) may be associated with an increased risk of death for critically ill patients. However, the relationship between the TIR and mortality may be influenced by the presence of diabetes and glycemic variability. METHODS: A total of 998 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The TIR is defined as the percentage of time spent in the target blood glucose range of 3.9–10.0 mmol/L within 24 hours. The relationship between TIR and in-hospital in diabetic and non-diabetic patients was analyzed. The effect of glycemic variability was also analyzed. RESULTS: The binary logistic regression model showed that there was a significant association between the TIR as a continuous variable and the in-hospital death of severely ill non-diabetic patients (OR=0.991, P=0.015). As a classification variable, TIR≥70% was significantly associated with in-hospital death (OR=0.581, P=0.003). Specifically, TIR≥70% was a protective factor for the in-hospital death of severely ill non-diabetic patients. The TIR of severely ill diabetic patients was not significantly associated with in-hospital death; however, glycemic variability was significantly and independently associated with in-hospital death (OR=1.042, P=0.027). Binary logistic regression analysis of comprehensive indices showed that for non-diabetic patients, the C3 index (low TIR & high CV) was a risk factor for increased mortality (OR=1.642, P<0.001). In addition, for diabetic patients, the C3 index was an independent risk factor for death (OR=1.994, P=0.008), and the C4 index (low TIR & low CV) was independently associated with increased survival. CONCLUSIONS: The TIR of non-diabetic patients during ICU hospitalization was associated with in-hospital death even after adjusting for disease severity and glycemic variability. There was no significant association between the TIR and mortality of diabetic patients. However, for both diabetic and non-diabetic critically ill patients, the combined effect of high TIR and low CV was significantly associated with ICU mortality. Diabetic patients seem to have higher blood glucose fluctuations and can tolerate a large TIR range. Both diabetic and non-diabetic critically ill patients should maintain blood glucose levels within the target range to reduce mortality.Keywords: severe disease, diabetes, blood glucose control, time in targeted blood glucose range, glycemic variability, mortality
Procedia PDF Downloads 22229093 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 19429092 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends
Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez
Abstract:
This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis
Procedia PDF Downloads 8329091 Dynamical and Thermal Study of Twin Impinging Jets a Vertical Plate with Various Jet Velocities and Impinging Distance
Authors: Louaifi Hamaili Samira, Mataoui Amina, Cheraitia Tadjeddine
Abstract:
This investigation proposes a numerical analysis of two turbulent parallel jets impinging a heated plate. The heat transfer enhancement is carried out according of the main parameters of the jet-wall interaction. The numerical solution of the stationary equations (RANS) is performed by the finite volume method using the k - ε model. A parametric study is performed to evaluate simultaneously the effect of nozzle-plate distance and velocity ratios in the range 0≤λ≤1. It is found that good local cooling is obtained for λ= 0.25 when the impinging distance is between 4w and 8w than for velocity ratios λ=1 and λ= 0.75. On the other hand, for impinging distances exceeding 8w, the velocity ratio λ =0.75 is more appropriate for good local cooling of the plate.Keywords: two unequal jets, turbulence, mixing, heat transfer, CFD
Procedia PDF Downloads 3229090 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 13629089 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 24529088 Brexit: Implications on Banking Regulations and Conditions; An Analysis
Authors: Astha Sinha, Anjali Kanagali
Abstract:
The United Kingdom’s withdrawal from the European Union, also termed as “Brexit,” took place on June 23, 2016 and immediately had global repercussions on the stock markets of the world. It is however expected to have a greater impact on the Banking sector in the UK. There is a two-fold effect on the earnings of banks which is being expected. First is of the trading activity and investment banking businesses being hit due to global weakness in financial markets. Second is that the banks having a large presence in the European Union will have to restructure their operations in order to cover other European countries as well increase their operating costs. As per the analysis, banks are expected to face rate cuts, bad loans, and tight liquidity. The directives in the Brexit negotiations on the Markets in Financial Instruments Directive (MiFID) will be a major decision to be taken for the Banking sector. New regulations will be required since most of the regulations governing the financial services industry allowing for the cross-border transactions were at the EU level. This paper aims to analyze the effect of Brexit on the UK Banking sector and changes in regulations that are expected due to the same. It shall also lay down the lessons learnt from the 2008 financial crisis and draw a parallel in terms of potential areas to be focused on for revival of the financial sector of Britain.Keywords: Brexit, Brexit impact on UK, impact of Brexit on banking, impact of Brexit on financial services
Procedia PDF Downloads 40829087 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations
Authors: Wieslaw Marszalek, Zdzislaw Trzaska
Abstract:
Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits
Procedia PDF Downloads 47029086 Oscillatory Electroosmotic Flow in a Microchannel with Slippage at the Walls and Asymmetric Wall Zeta Potentials
Authors: Oscar Bautista, Jose Arcos
Abstract:
In this work, we conduct a theoretical analysis of an oscillatory electroosmotic flow in a parallel-plate microchannel taking into account slippage at the microchannel walls. The governing equations given by the Poisson-Boltzmann (with the Debye-Huckel approximation) and momentum equations are nondimensionalized from which four dimensionless parameters appear; a Reynolds angular number, the ratio between the zeta potentials of the microchannel walls, the electrokinetic parameter and the dimensionless slip length which measures the competition between the Navier slip length and the half height microchannel. The principal results indicate that the slippage has a strong influence on the magnitude of the oscillatory electroosmotic flow increasing the velocity magnitude up to 50% for the numerical values used in this work.Keywords: electroosmotic flows, oscillatory flow, slippage, microchannel
Procedia PDF Downloads 22429085 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning
Procedia PDF Downloads 44629084 Teachers’ Intention to Leave: Educational Policies as External Stress Factor
Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova
Abstract:
It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress
Procedia PDF Downloads 10929083 Child Homicide Victimization and Community Context: A Research Note
Authors: Bohsiu Wu
Abstract:
Among serious crimes, child homicide is a rather rare event. However, the killing of children stirs up a special type of emotion in society that pales other criminal acts. This study examines the relevancy of three possible community-level explanations for child homicide: social deprivation, female empowerment, and social isolation. The social deprivation hypothesis posits that child homicide results from lack of resources in communities. The female empowerment hypothesis argues that a higher female status translates into a higher level of capability to prevent child homicide. Finally, the social isolation hypothesis regards child homicide as a result of lack of social connectivity. Child homicide data, aggregated by US postal ZIP codes in California from 1990 to 1999, were analyzed with a negative binomial regression. The results of the negative binomial analysis demonstrate that social deprivation is the most salient and consistent predictor among all other factors in explaining child homicide victimization at the ZIP-code level. Both social isolation and female labor force participation are weak predictors of child homicide victimization across communities. Further, results from the negative binomial regression show that it is the communities with a higher, not lower, degree of female labor force participation that are associated with a higher count of child homicide. It is possible that poor communities with a higher level of female employment have a lesser capacity to provide the necessary care and protection for the children. Policies aiming at reducing social deprivation and strengthening female empowerment possess the potential to reduce child homicide in the community.Keywords: child homicide, deprivation, empowerment, isolation
Procedia PDF Downloads 19429082 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 27829081 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach
Authors: Kavindan Balakrishnan
Abstract:
Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure
Procedia PDF Downloads 12429080 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility
Authors: Etienne Provencal, David L. St-Pierre
Abstract:
A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.Keywords: EGM, linear regression, model prediction, slot operations
Procedia PDF Downloads 25529079 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 1329078 Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock
Authors: Mohammadmehdi Torfehnejada, Serhan Senso
Abstract:
Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations.Keywords: aftershock collapse capacity, special steel moment frames, mainshock-aftershock sequences, incremental dynamic analysis, mainshock damage
Procedia PDF Downloads 15229077 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind
Authors: Fidelis Chigondo
Abstract:
This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.Keywords: biosorption, phenol, biosorbent, watermelon rind
Procedia PDF Downloads 24729076 Equity Investment Restrictions and Pension Replacement Rates in Nigeria: A Ruin-Risk Analysis
Authors: Uche A. Ibekwe
Abstract:
Pension funds are pooled assets which are established to provide income for retirees. The funds are usually regulated to check excessive risk taking by fund managers. In Nigeria, the current defined contribution (DC) pension scheme appears to contain some overly stringent restrictions which might be hampering its successful implementation. Notable among these restrictions is the 25 percent maximum limit on investment in ordinary shares of quoted companies. This paper examines the extent to which these restrictions affect pension replacement rates at retirement. The study made use of both simulated and historical asset return distributions using mean-variance, regression analysis and ruin-risk analyses, the study found that the current equity investment restriction policy in Nigeria reduces replacement rates at retirement.Keywords: equity investment, replacement rates, restrictions, ruin-risk
Procedia PDF Downloads 34429075 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor
Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi
Abstract:
Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).Keywords: adsorption, electrochemical oxidation, metals, SBR
Procedia PDF Downloads 21029074 Conflict of the Thai-Malaysian Gas Pipeline Project
Authors: Nopadol Burananuth
Abstract:
This research was aimed to investigate (1) the relationship among local social movements, non-governmental Organization activities and state measures deployment; and (2) the effects of local social movements, non-governmental Organization activities, and state measures deployment on conflict of local people towards the Thai-Malaysian gas pipeline project. These people included 1,000 residents of the four districts in Songkhla province. The methods of data analysis consist of multiple regression analysis. The results of the analysis showed that: (1) local social movements depended on information, and mass communication; deployment of state measures depended on compromise, coordination, and mass communication; and (2) the conflict of local people depended on mobilization, negotiation, and campaigning for participation of people in the project. Thus, it is recommended that to successfully implement any government policy, consideration must be paid to the conflict of local people, mobilization, negotiation, and campaigning for people’s participation in the project.Keywords: conflict, NGO activities, social movements, state measures
Procedia PDF Downloads 32229073 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 29929072 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 12729071 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 12429070 Market-Power, Stability, and Risk-Taking: An Analysis Surrounding the Riba-Free Banking
Authors: Louati Salma, Louhichi Awatef, Boujelbene Younes
Abstract:
Analysis of the trade-off between competition and financial stability has been at the center of academic and policy debate for over two decades and especially since the 2007-2008 global financial crises. We use information on 10 OIC countries from 2005 to 2014 to investigate the influence of bank competition on individual bank stability and risk-taking. Alternatively, we explore whether the quality of prudential regulation may affect the nexus between competition and banking stability/risk-taking. We provide a particular attention to the Islamic banking system which principally involves with the Riba-free instruments as compared to the conventional interest-based system. We first run a dynamic panel regression (GMM), and then we apply a panel vector autoregressive (PVAR) methodology to compare both banking business models.Keywords: Lerner index, Islamic banks, non-performing loans, prudential regulations, z-score
Procedia PDF Downloads 29729069 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 338