Search results for: groundwater storage
1743 Interactive IoT-Blockchain System for Big Data Processing
Authors: Abdallah Al-ZoubI, Mamoun Dmour
Abstract:
The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.Keywords: IoT devices, blockchain, Ethereum, big data
Procedia PDF Downloads 1501742 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems
Authors: Jun Yuan
Abstract:
Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.Keywords: shipping emission, electricity ship, charging station, optimal design
Procedia PDF Downloads 631741 Constructal Enhancement of Fins Design Integrated to Phase Change Materials
Authors: Varun Joshi, Manish K. Rathod
Abstract:
The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.Keywords: constructal theory, enthalpy porosity approach, phase change materials, fins
Procedia PDF Downloads 1811740 Typical Emulsions as Probiotic Food Carrier: Effect of Cells Position on Its Viability
Authors: Mengfan Li, Filip Van Bockstaele, Wenyong Lou, Frank Devlighere
Abstract:
The development of probiotics-encapsulated emulsions that maintain the viability of probiotics during processing, storage and human gastrointestinal (GI) tract environment receives great scientific and commercial interest. In this study, typical W/O and O/W emulsions with and without oil gelation were used to encapsulate L. plantarum. The effects of emulsion types on the viability of L. plantarum during storage and GI tract were investigated. Besides, the position of L. plantarum in emulsion system and its number of viable cells when threating by adverse environment was correlated in order to figure out which type of emulsion is more suitable as food carrier for probiotics encapsulation and protection. As a result, probiotics tend to migrate from oil to water phase due to the natural hydrophilicity; however, it’s harmful for cells viability when surrounding by water for a long time. Oil gelation in emulsions is one of the promising strategies for inhibiting the cells mobility and decreasing the contact with adverse factors (e.g., water, exogenous enzymes and gastric acid), thus enhancing the number of viable cells that enough to exert its beneficial effects in host.Keywords: emulsion, gelation, encapsulation, probiotics
Procedia PDF Downloads 1101739 Evaluation of the Quality Water Irrigation in Region of Lioua (Biskra), Algeria
Authors: F. Hiouani, M. Henouda, A. Masmoudi, M. Rechachi
Abstract:
The objective of this study was to evaluate the quality of irrigation water of some underground water resources in the region of Lioua (Biskra, Algéria). Analysis of cations (Ca++, Mg++, Na+, K+), anions (Cl-, SO4--, CO3--, HCO3-, NO3-), pH and electrical conductivity (EC) of ten water samples taken during March 2015. The resulted showed that water samples are designated salty and very salty. On the other hand, average SAR values show that there is no alkalinity risk of soil. According to Riverside diagram water samples are grouped into five classes (C3-S1, C4-S1, C4-S3, C5-S2 and C5-S3).Keywords: groundwater, irrigation, quality, lioua biskra
Procedia PDF Downloads 3131738 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost
Procedia PDF Downloads 881737 The LNG Paradox: The Role of Gas in the Energy Transition
Authors: Ira Joseph
Abstract:
The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables
Procedia PDF Downloads 621736 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1241735 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems
Authors: Yasar Pala, Safa Senaysoy, Emre Calis
Abstract:
In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization
Procedia PDF Downloads 2601734 Testing the Impact of Formal Interpreting Training on Working Memory Capacity: Evidence from Turkish-English Student-Interpreters
Authors: Elena Antonova Unlu, Cigdem Sagin Simsek
Abstract:
The research presents two studies examining the impact of formal interpreting training (FIT) on Working Memory Capacity (WMC) of student-interpreters. In Study 1, the storage and processing capacities of the working memory (WM) of last-year student-interpreters were compared with those of last-year Foreign Language Education (FLE) students. In Study 2, the impact of FIT on the WMC of student-interpreters was examined via comparing their results on WM tasks at the beginning and the end of their FIT. In both studies, Digit Span Task (DST) and Reading Span Task (RST) were utilized for testing storage and processing capacities of WM. The results of Study 1 revealed that the last-year student-interpreters outperformed the control groups on the RST but not on the DST. The findings of Study 2 were consistent with Study 1 showing that after FIT, the student-interpreters performed better on the RST but not on the DST. Our findings can be considered as evidence supporting the view that FIT has a beneficial effect not only on the interpreting skills of student-interpreters but also on the central executive and processing capacity of their WM.Keywords: working memory capacity, formal interpreting training, student-interpreters, cross-sectional and longitudinal data
Procedia PDF Downloads 2061733 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level
Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova
Abstract:
The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature
Procedia PDF Downloads 1371732 Enhancement of Shelflife of Malta Fruit with Active Packaging
Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar
Abstract:
Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.Keywords: Malta fruit, scavenger, packaging, shelf life
Procedia PDF Downloads 2801731 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece
Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis
Abstract:
A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy
Procedia PDF Downloads 1561730 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport
Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer
Abstract:
Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets
Procedia PDF Downloads 1501729 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems
Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur
Abstract:
The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems
Procedia PDF Downloads 861728 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System
Authors: Jacob T. Liberty, Wilfred I. Okonkwo
Abstract:
The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage
Procedia PDF Downloads 3081727 Single Ion Transport with a Single-Layer Graphene Nanopore
Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru
Abstract:
Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics
Procedia PDF Downloads 3221726 Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application
Authors: Soraya Hoornam, Zeinab Sanaee
Abstract:
Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries.Keywords: SiO₂ nanoparticles, lithium-ion battery, pre-lithiation, anode material
Procedia PDF Downloads 1221725 Risk Aversion and Dynamic Games between Hydroelectric Operators under Uncertainty
Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini
Abstract:
This article analyses management of hydropower dams within two different industrial structures: monopolistic and oligopolistic; when hydroelectricity producers are risk averse and face demand uncertainty. In each type of market structure we determine the water release path in closed-loop equilibrium. We show how a monopoly can manage its hydropower dams by additional pumping or storage depending on the relative abundance of water between different regions to smooth the effect of uncertainty on electricity prices. In the oligopolistic case with symmetric rates of risk aversion, we determine the conditions under which the relative scarcity (abundance) of water in the dam of a hydroelectric operator can favor additional strategic pumping (storage) in its competitor’s dams. When there is asymmetry of the risk aversion coefficient, the firm’s hydroelectricity production increases as its competitor’s risk aversion increases, if and only if the average recharge speed of the competitor’s dam exceeds a certain threshold, which is an increasing function of its average water inflows.Keywords: asymmetric risk aversion, closed-loop Cournot competition, electricity wholesale market, hydropower dams
Procedia PDF Downloads 3551724 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa
Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel
Abstract:
Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group
Procedia PDF Downloads 1101723 Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks
Authors: Marcelo Sanhueza Cartes, Nelson Maureira Carsalade
Abstract:
This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude.Keywords: pallet isolation system, industrial storage racks, basal shear load, interstory drift.
Procedia PDF Downloads 731722 Development of Scenarios for Sustainable Next Generation Nuclear System
Authors: Muhammad Minhaj Khan, Jaemin Lee, Suhong Lee, Jinyoung Chung, Johoo Whang
Abstract:
The Republic of Korea has been facing strong storage crisis from nuclear waste generation as At Reactor (AR) temporary storage sites are about to reach saturation. Since the country is densely populated with a rate of 491.78 persons per square kilometer, Construction of High-level waste repository will not be a feasible option. In order to tackle the storage waste generation problem which is increasing at a rate of 350 tHM/Yr. and 380 tHM/Yr. in case of 20 PWRs and 4 PHWRs respectively, the study strongly focuses on the advancement of current nuclear power plants to GEN-IV sustainable and ecological nuclear systems by burning TRUs (Pu, MAs). First, Calculations has made to estimate the generation of SNF including Pu and MA from PWR and PHWR NPPS by using the IAEA code Nuclear Fuel Cycle Simulation System (NFCSS) for the period of 2016, 2030 (including the saturation period of each site from 2024~2028), 2089 and 2109 as the number of NPPS will increase due to high import cost of non-nuclear energy sources. 2ndly, in order to produce environmentally sustainable nuclear energy systems, 4 scenarios to burnout the Plutonium and MAs are analyzed with the concentration on burning of MA only, MA and Pu together by utilizing SFR, LFR and KALIMER-600 burner reactor after recycling the spent oxide fuel from PWR through pyro processing technology developed by Korea Atomic Energy Research Institute (KAERI) which shows promising and sustainable future benefits by minimizing the HLW generation with regard to waste amount, decay heat, and activity. Finally, With the concentration on front and back end fuel cycles for open and closed fuel cycles of PWR and Pyro-SFR respectively, an overall assessment has been made which evaluates the quantitative as well as economical combativeness of SFR metallic fuel against PWR once through nuclear fuel cycle.Keywords: GEN IV nuclear fuel cycle, nuclear waste, waste sustainability, transmutation
Procedia PDF Downloads 3531721 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.
Authors: Najih Amina
Abstract:
Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.
Procedia PDF Downloads 4091720 The Causes and Potential Solutions for Foodborne Illness, Food Security, and Food Safety: In the Case of the East Harerghe Region of Oromia, Ethiopia
Authors: Tuji Jemal Ahmed, Abdi Mohammed, Geremew Geidare Kailo
Abstract:
Food security, foodborne illness, and food safety are critical issues that affect the East Harerghe region of Oromia, Ethiopia. Despite the region's potential for agriculture, food insecurity remains a significant problem, with many households experiencing chronic hunger and malnutrition. The region also experiences high rates of foodborne illnesses, including cholera, typhoid, and diarrhea, which are caused by poor hygiene and sanitation practices. Additionally, food safety is a significant challenge, particularly in rural areas, where there is a lack of infrastructure, inadequate food storage facilities, and limited access to information about food safety. There are several factors that contribute to the current situation in the East Harerghe region; firstly, the region is susceptible to natural disasters, for instance, drought, which affects crop yields and livestock production. Secondly, the region also experiences poor infrastructure, which affects the storage and transportation of food, particularly in rural areas. Thirdly, there is a lack of awareness and knowledge on good hygiene and sanitation practices, specifically during food handling, processing, and storage. Fourthly, unitability due to conflict and other forms of land degradation exacerbates food insecurity and malnutrition. Finally, limited access to financial resources and markets commonly affects smallholder farmers by their ability to produce and sell food. To address the current situation in that area, several potential solutions can be implemented; investment in infrastructure is necessary, especially in rural areas, to improve the storage and transportation of food. Education and awareness programs on good hygiene and sanitation practices should target local communities, smallholder farmers, and food vendors. Financial resources and markets should be made more accessible to smallholder farmers, particularly through the provision of credit and improved access to markets. Addressing the underlying causes of conflict and promoting peaceful coexistence can help to reduce displacement and loss of livelihoods. Finally, the enforcement of food safety regulations and the implementation of standards for food processing and storage facilities are necessary to ensure food safety. In conclusion, addressing the challenges of food security, foodborne illness, and food safety in the East Harerghe region requires a coordinated effort from various stakeholders, including the government, non-governmental organizations, and local communities. By implementing the solutions outlined above, the region can improve its food security, prevent foodborne illnesses, and keep food safe for its population. Eventually, building the resilience of communities to shocks such as droughts, floods, and conflict is necessary to ensure long-term food security in the region.Keywords: foodborne illness, food handling, food safety, food security
Procedia PDF Downloads 1011719 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions
Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori
Abstract:
Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.Keywords: Glycine max (L.), cluster analysis, PCA, vigor
Procedia PDF Downloads 2591718 Confinement and Storage of Cyanate in the Nano Scale via Nanolayered Structures
Authors: Osama Saber
Abstract:
Cyanate is one such anion which is produced during protein poisoning in the body and has been studied extensively in the field of biochemistry because of its toxicity. The present work aims at confinement and storage of cyanate in the nano scale. It was achieved through the intercalation of cyanate anions into nanolayerd structures of Ni-Al LDH. In addition, the effect of aging time on the intercalation of cyanate was clarified using X-ray diffraction and scanning electron microscopy. Furthermore, the effect of cations on the affinity towards the intercalation of cyanate anions inside LDH structure was studied by replacement of tetra-valent cations Ti4+ instead of the tri-vallent cations Al3+ during the preparation of LDH structure. X-ray diffraction patterns of the Ni-Ti LDH showed that the interlayer spacing was 0.73 nm. This spacing was smaller than that of Ni-Al LDH suggesting that the interlayered anions into Ni-Ti LDH are different from those into Ni-Al LDH. Thermal analyses (TG, DTG, and DTA) and Infra-red spectra revealed the presence of only cyanate anions into Ni-Ti LDH while, in the case of Ni-Al LDH, both cyanate and carbonate anions were observed. SEM images showed plate-like morphology for both Ni-Ti and Ni-Al LDHs although the shapes of their plates are not similar. Our results suggested that the LDH structures containing titanium cations have higher affinity for cyanate anions than those containing aluminum cations. Therefore, this choice for cyanate in the interlayered spacing widens the applicability to study the effect of the confinement on the toxicity of cyanate by bio researchers.Keywords: nanolayered structures, Ni-Al LDH, Ni-Ti LDH, intercalation of cyanate anions, urea hydrolysis
Procedia PDF Downloads 5181717 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 671716 Sensory and Microbiological Sustainability of Smoked Meat Products–Smoked Ham in Order to Determine the Shelf-Life under the Changed Conditions at +15°C
Authors: Radovan Čobanović, Milica Rankov Šicar
Abstract:
The meat is in the group of perishable food which can be spoiled very rapidly if stored at room temperature. Salting in combination with smoke is intended to extend shelf life, and also to form the specific taste, odor and color. The smoke do not affect only on taste and flavor of the product, it has a bactericidal and oxidative effect and that is the reason because smoked products are less susceptible to oxidation and decay processes. According to mentioned the goal of this study was to evaluate shelf life of smoked ham, which is stored in conditions of high temperature (+15 °C). For the purposes of this study analyzes were conducted on eight samples of smoked ham every 7th day from the day of reception until 21st day. During this period, smoked ham is subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp. and yeasts and molds) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579 and yeasts and molds ISO 21527-2. Results of sensory analysis of smoked ham indicating that the samples after the first seven days of storage showed visual changes at the surface in the form of allocations of salt, most likely due to the process of drying out the internal parts of the product. The sample, after fifteen days of storage had intensive exterior changes, but the taste was still acceptable. Between the fifteenth and twenty-first day of storage, there is an unacceptable change on the surface and inside of the product and the occurrence of molds and yeasts but neither one analyzed pathogen was found. Based on the obtained results it can be concluded that this type of product cannot be stored for more than seven days at an elevated temperature of +15°C because there are a visual changes that would certainly have influence on decision of customers when purchase of this product is concerned.Keywords: sustainability, smoked meat products, food engineering, agricultural process engineering
Procedia PDF Downloads 3611715 Molecular Characterization of Grain Storage Proteins in Some Hordeum Species
Authors: Manar Makhoul, Buthainah Alsalamah, Salam Lawand, Hassan Azzam
Abstract:
The major storage proteins in endosperm of 33 cultivated and wild barley genotypes (H.vulgare, H. spontaneum, H. bulbosum, H. murinum, H. marinum) were analyzed to demonstrate the variation in the hordein polypeptides encoded by multigene families in grains. The SDS-PAGE revealed 13 and 17 alleles at the Hor1 and the Hor2 loci respectively, with frequencies from 0.83 to 14 and 0.56 to 13.41% respectively, while seven alleles at the Hor3 locus with frequencies from 3.63 to 30.91% were recognized. The phylogenetic analysis indicated to relevance of the polymorphism in hordein patterns as successful tool in identifying the individual genotypes and discriminating the species according to genome type. We also reported in this research complete nucleotide sequence B-hordein genes of seven wild and cultivated barley genotypes. A 152bp upstream sequence of B-hordein promoter contained a TATA box, CATC box, AAAG motif, N-motif and E-motif. In silico analysis of B-Hordein sequences demonstrated that the coding regions were not interrupted by any intron, and included the complete ORF which varied between 882 and 906 bp, and encoded mature proteins with 293-301 residues characterized by high contents of glutamine (29%), and proline (18%). Comparison of the predicted polypeptide sequences with the published ones suggested that all S-rich prolamins genes are descended from common ancestor. The sequence started at N-terminal with a signal peptide, and then followed directly by two domains; a repetitive one based on the repetition of the repeat unit PQQPFPQQ and C-terminal domain. Also, it was found that positions of the eight cysteine residues were highly conserved in all the B-hordein sequences, but Hordeum bulbosum had additional unpaired one. The phylogenetic tree of B-hordein polypeptide separated the genotypes in distinct seven subgroups. In general, the high homology between B-hordeins and LMW glutenin subunits suggests similar bread-making influences for these B-hordeins.Keywords: hordeum, phylogenetic tree, sequencing, storage protein
Procedia PDF Downloads 2671714 Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation
Authors: Anthony Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam, Suprakas Sinha Ray
Abstract:
High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications.Keywords: energy storage, V₂C/ ZnS hybrid, polypyrrole, MXene, nanocomposite, dielectric
Procedia PDF Downloads 118