Search results for: diffusive fluid
1340 Performance Evaluation of a Small Microturbine Cogeneration Functional Model
Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag
Abstract:
The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.Keywords: cogeneration, microturbine, performance, thermodynamic analysis
Procedia PDF Downloads 1711339 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers
Authors: L. Achab, F. Iachachene
Abstract:
In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method
Procedia PDF Downloads 601338 Numerical Investigation of a Spiral Bladed Tidal Turbine
Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry
Abstract:
From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability
Procedia PDF Downloads 1231337 Glycosaminoglycan, a Cartilage Erosion Marker in Synovial Fluid of Osteoarthritis Patients Strongly Correlates with WOMAC Function Subscale
Authors: Priya Kulkarni, Soumya Koppikar, Narendrakumar Wagh, Dhanshri Ingle, Onkar Lande, Abhay Harsulkar
Abstract:
Cartilage is an extracellular matrix composed of aggrecan, which imparts it with a great tensile strength, stiffness and resilience. Disruption in cartilage metabolism leading to progressive degeneration is a characteristic feature of Osteoarthritis (OA). The process involves enzymatic depolymerisation of cartilage specific proteoglycan, releasing free glycosaminoglycan (GAG). This released GAG in synovial fluid (SF) of knee joint serves as a direct measure of cartilage loss, however, limited due to its invasive nature. Western Ontario and McMaster Universities Arthritis Index (WOMAC) is widely used for assessing pain, stiffness and physical-functions in OA patients. The scale is comprised of three subscales namely, pain, stiffness and physical-function, intends to measure patient’s perspective of disease severity as well as efficacy of prescribed treatment. Twenty SF samples obtained from OA patients were analysed for their GAG values in SF using DMMB based assay. LK 1.0 vernacular version was used to attain WOMAC scale. The results were evaluated using SAS University software (Edition 1.0) for statistical significance. All OA patients revealed higher GAG values compared to the control value of 78.4±30.1µg/ml (obtained from our non-OA patients). Average WOMAC calculated was 51.3 while pain, stiffness and function estimated were 9.7, 3.9 and 37.7, respectively. Interestingly, a strong statistical correlation was established between WOMAC function subscale and GAG (p = 0.0102). This subscale is based on day-to-day activities like stair-use, bending, walking, getting in/out of car, rising from bed. However, pain and stiffness subscale did not show correlation with any of the studied markers and endorsed the atypical inflammation in OA pathology. On one side, where knee pain showed poor correlation with GAG, it is often noted that radiography is insensitive to cartilage degenerative changes; thus OA remains undiagnosed for long. Moreover, active cartilage degradation phase remains elusive to both, patient and clinician. Through analysis of large number of OA patients we have established a close association of Kellgren-Lawrence grades and increased cartilage loss. A direct attempt to correlate WOMAC and radiographic progression of OA with various biomarkers has not been attempted so far. We found a good correlation in GAG levels in SF and the function subscale.Keywords: cartilage, Glycosaminoglycan, synovial fluid, western ontario and McMaster Universities Arthritis Index
Procedia PDF Downloads 4481336 Increment of Panel Flutter Margin Using Adaptive Stiffeners
Authors: S. Raja, K. M. Parammasivam, V. Aghilesh
Abstract:
Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape
Procedia PDF Downloads 2951335 Prenatal Diagnosis of Beta Thalassemia Intermedia in Vietnamese Family: Case Report
Authors: Ha T. T. Ly, Truc B. Truc, Hai N. Truong, Mai P. T. Nguyen, Ngoc D. Ngo, Khanh V. Tran, Hai T. Le
Abstract:
Beta thalassemia is one of the most common inherited blood disorders, which is characterized by decreased or absent in beta globin expression. Patients with Beta thalassemia whose anemia is not so severe as to necessitate transfusions are said to have thalassemia intermedia. Objective: The goal of this study is prenatal diagnosis for pregnancy woman with Beta thalassemia intermedia and her husband with Beta thalassemia carrier at high risk of Beta thalassemia major in Northern of Vietnam. Material and method: The family has a 6 years-old compound heterozygous thalassemia major for CD71/72(+A) and Hbb:c. -78A>G/nt-28(A>G) male child. The father was heterozygous for CD71/72(+A) mutation which is Beta plus type and the mother was compound heterozygosity of two different variants, namely, Hbb: c. -78A>G/nt-28(A>G) and CD26(A-G) HbE. Prenatal Beta thalassemia mutation detection in fetal DNA was carried out using multiplex Amplification-refractory mutation system ARMS-PCR and confirmed by direct Sanger-sequencing Hbb gene. Prenatal diagnoses were perfomed by amniotic fluid sampling from pregnant woman in the 16-18th week of pregnancy after the genotypes of parents of the probands were identified. Result: When amniotic fluid sample was analyzed for Beta globin gene (Hbb), we found that the genotype is heterozygous for CD71/72(+A) and CD26(A-G) HbE. This genotype is different from the 1st child of this family. Conclusion: Prenatal diagnosis helps the parents to know the genotype and the thalassemia status of the fetus, so they can have early decision on their pregnancy. Genetic diagnosis provided a useful method in diagnosis for familial members in pedigree, genetic counseling and prenatal diagnosis.Keywords: beta thalassemia intermedia, Hbb gene, pedigree, prenatal diagnosis
Procedia PDF Downloads 3861334 High Aspect Ratio Micropillar Array Based Microfluidic Viscometer
Authors: Ahmet Erten, Adil Mustafa, Ayşenur Eser, Özlem Yalçın
Abstract:
We present a new viscometer based on a microfluidic chip with elastic high aspect ratio micropillar arrays. The displacement of pillar tips in flow direction can be used to analyze viscosity of liquid. In our work, Computational Fluid Dynamics (CFD) is used to analyze pillar displacement of various micropillar array configurations in flow direction at different viscosities. Following CFD optimization, micro-CNC based rapid prototyping is used to fabricate molds for microfluidic chips. Microfluidic chips are fabricated out of polydimethylsiloxane (PDMS) using soft lithography methods with molds machined out of aluminum. Tip displacements of micropillar array (300 µm in diameter and 1400 µm in height) in flow direction are recorded using a microscope mounted camera, and the displacements are analyzed using image processing with an algorithm written in MATLAB. Experiments are performed with water-glycerol solutions mixed at 4 different ratios to attain 1 cP, 5 cP, 10 cP and 15 cP viscosities at room temperature. The prepared solutions are injected into the microfluidic chips using a syringe pump at flow rates from 10-100 mL / hr and the displacement versus flow rate is plotted for different viscosities. A displacement of around 1.5 µm was observed for 15 cP solution at 60 mL / hr while only a 1 µm displacement was observed for 10 cP solution. The presented viscometer design optimization is still in progress for better sensitivity and accuracy. Our microfluidic viscometer platform has potential for tailor made microfluidic chips to enable real time observation and control of viscosity changes in biological or chemical reactions.Keywords: Computational Fluid Dynamics (CFD), high aspect ratio, micropillar array, viscometer
Procedia PDF Downloads 2481333 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding
Procedia PDF Downloads 2991332 Culturing of Bovine Pre-Compacted Morlae in TCM-199 and Baf in a Standard 5% CO2 Laboratory Incubator and in the Vagina of a Goat Doe
Authors: Daniel M. Barry
Abstract:
Since more than half a century ago, attempts have been made to culture cells and embryos outside the body (in vitro or ex vivo). This was done with different culture media and in various “incubators”. In the present study two different culture media were used: a standard TCM-199 culture medium and first trimester amniotic fluid (BAF) collected sterilely from pregnant cows after slaughter. Two different culture conditions were also investigated, the standard laboratory CO2 incubator versus culturing bovine embryos in the vagina of a goat doe. Two experiments were done: Firstly the permeability of different receptacles to CO2 gas was analyzed for possible culture in the vagina. Four-well plates and straws were used to incubate TCM-199 and BAF for a period of 120 h in the presence or absence of 5% CO2 gas. The pH values were measured and recorded every 24 h. In the second experiment pre-compacted morula stage bovine embryos were cultured in the above culture media in sealed 0.25 mL straws in a standard laboratory incubator and in the vagina of a goat doe. Evaluation was done on (1) stage of development and (2) number of blastomeres after 96 h of culture. In the first experiment it was shown that the CO2 gas diffused out of the 4-well plate as well as through the wall of the straws in the absence of CO2 gas, while in the presence of CO2 the pH of both media stabilized between 7.3 and 7.5. This meant that the semen straws were permeable to CO2 gas and could therefore be used as receptacles for culturing early stage bovine embryos. In the second experiment no statistical differences (p>0.05) were found in the number of pre-compacted bovine embryos that developed to the blastocyst stage, or the hatched blastocyst stage, neither for the culture medium used, or the method of culturing in the two incubators. Neither was there any difference (p>0.05) in the number of blastomeres that developed at the blastocyst stage between the two types of incubators. The bovine embryos tended to develop more blastomeres when cultured in BAF than when cultured in TCM-199 in both the standard laboratory incubator and when using the vagina of a goat doe as an incubator.Keywords: alternative culture, bovine embryos, vagina, bovine amniotic fluid, incubator
Procedia PDF Downloads 4911331 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed
Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan
Abstract:
Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling
Procedia PDF Downloads 3841330 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model
Procedia PDF Downloads 2151329 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications
Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan
Abstract:
The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo
Procedia PDF Downloads 1471328 Level of IGF-I and IGFBP-3 in Gingival Crevicular Fluid and Plasma in Patients with Aggressive Periodontitis
Authors: Youjeong Hwang
Abstract:
Purpose: Insulin-like growth factor-I (IGF-I) promotes B-cell development, immunoglobulin formation, and interleukin-6 (IL-6) production, then regulate the immune response and inflammation. As IGF-I and their receptor also exist in the periodontal tissue, they may affect the immune response caused by periodontal pathogens in aggressive periodontitis (AgP) patients. The function of IGF is regulated by IGF binding proteins (IGFBPs), and IGFBP-3 is known to most abundant in plasma. The aim of the present study was to assess the concentration of IGF-I and IGFBP-3 in plasma and gingival crevicular fluid (GCF) in AgP patients and to find out their association. Methods: Nine patients with AgP (test group) and nine healthy subjects (control group) were included in this study. None of the subjects had a history of systemic disease, smoking or steroids medication. GCF samples were collected by microcapillary pipettes and plasma samples were obtained by venipuncture. Probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were recorded. Samples were assayed for IGF-I and IGFBP-3 levels using ELISA. Results: Mean IGF-I level in GCF was higher in the test group than control. Mean IGF-I level in plasma and IGFBP-3 level in GCF and plasma in control group were higher than that of the test group. However, there was no statistical significance (p > 0.05). The mean level of IGF-I and IGFBP-3 in GCF was lower than those in plasma. Mean IGF-I level in plasma showed a negative correlation with PD and CAL (p < 0.05) in both groups. The levels of IGF-I and IGFBP-3 in GCF seemed to be negatively correlated with BOP in the test group (p < 0.05). Conclusions: The difference in the level of IGF-I and IGFBP-3 between AgP and healthy subjects was not significant. Further studies that explain the mechanism of the protective role of IGF-I with more samples are needed.Keywords: aggressive periodontitis, pathogenesis, insulin-like growth factor, insulin-like growth factor binding protein
Procedia PDF Downloads 2121327 Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production
Authors: S. H. Nguyen, L. Li, R. S. Hegarty
Abstract:
Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro.Keywords: defaunation, nitrate, fermentation, methane production
Procedia PDF Downloads 5601326 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field
Authors: Anurag Gaur Nidhi
Abstract:
Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study
Procedia PDF Downloads 3111325 Reactivity of Clay Minerals of the Hydrocarbon Reservoir Rocks and the Effect of Zeolites on Operation and Production Costs That the Oil Industry in the World Assumes
Authors: Carlos Alberto Ríos Reyes
Abstract:
Traditionally, clays have been considered as one of the main problems in the flow of fluids in hydrocarbon reservoirs. However, there is not known the significance of zeolites formed from the reactivity of clays and their effect not only on the costs of operations carried out by the oil industry in the world but also on production. The present work focused on understanding the interaction between clay minerals with brines and alkaline solutions used in the oil industry. For this, a comparative study was conducted where the reaction of sedimentary rocks under laboratory conditions was examined. Original and treated rocks were examined by X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM) to determine the changes that these rocks underwent upon contact with fluids of variable chemical composition. As a result, zeolite Linde Type A (LTA), sodalite (SOD), and cancrinite (CAN) can be formed after experimental work, which coincided with the dissolution of kaolinite and smectite. Results reveal that the Oil Industry should invest efforts and focus its gaze to understand at the pore scale the problem that could arise as a consequence of the clay-fluid interaction in hydrocarbon reservoir rocks due to the presence of clays in their porous system, as well as the formation of zeolites, which are better hydrocarbon absorbents. These issues could be generating losses in world production. We conclude that there is a critical situation that may be occurring in the stimulation of hydrocarbon reservoirs, where real solutions are necessary not only for the formulation of more efficient and effective injection fluids but also to contribute to the improvement of production and avoid considerable losses in operating costs.Keywords: clay minerals, zeolites, rock-fluid interaction, experimental work, reactivity
Procedia PDF Downloads 881324 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 1371323 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms
Authors: Saurav S. Rath, Birendra K. David
Abstract:
Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.Keywords: computational fluid dynamics, morphology, quality-by-design, rheology
Procedia PDF Downloads 2701322 Orientia Tsutsugamushi an Emerging Etiology of Acute Encephalitis Syndrome in Northern Part of India
Authors: Amita Jain, Shantanu Prakash, Suruchi Shukla
Abstract:
Introduction: Acute encephalitis syndrome (AES) is a complex multi etiology syndrome posing a great public health problem in the northern part of India. Japanese encephalitis (JE) virus is an established etiology of AES in this region. Recently, Scrub typhus (ST) is being recognized as an emerging aetiology of AES in JE endemic belt. This study was conducted to establish the direct evidence of Central nervous system invasion by Orientia tsutsugamushi leading to AES. Methodology: A total of 849 cases with clinical diagnosis of AES were enrolled from six districts (Deoria and its adjoining area) of the traditional north Indian Japanese encephalitis (JE) belt. Serum and Cerebrospinal fluid samples were collected and tested for major agent causing acute encephalitis. AES cases either positive for anti-ST IgM antibodies or negative for all tested etiologies were investigated for ST-DNA by real-time PCR. Results: Of these 505 cases, 250 patients were laboratory confirmed for O. tsutsugamushi infection either by anti-ST IgM antibodies positivity (n=206) on serum sample or by ST-DNA detection by real-time PCR assay on CSF sample (n=2) or by both (n=42).Total 29 isolate could be sequenced for 56KDa gene. Conclusion: All the strains were found to cluster with Gilliam strains. The majority of the isolates showed a 97–99% sequence similarity with Thailand and Cambodian strains. Gilliam strain of O.tsusugamushi is an emerging as one of the major aetiologies leading to AES in northern part of India.Keywords: acute encephalitis syndrome, O. tsutsugamushi, Gilliam strain, North India, cerebrospinal fluid
Procedia PDF Downloads 2521321 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study
Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan
Abstract:
Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation
Procedia PDF Downloads 2281320 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 3711319 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration
Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang
Abstract:
The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability
Procedia PDF Downloads 3471318 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds
Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott
Abstract:
Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 3731317 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills
Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry
Abstract:
The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel
Procedia PDF Downloads 3811316 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 1371315 On the Well-Posedness of Darcy–Forchheimer Power Model Equation
Authors: Johnson Audu, Faisal Fairag
Abstract:
In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.Keywords: porous media, power law, strong inertia, nonlinear, monotone type
Procedia PDF Downloads 3191314 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction
Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie
Abstract:
Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches
Procedia PDF Downloads 2171313 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet
Authors: Bello Muhammad Dogon Kade
Abstract:
The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein
Procedia PDF Downloads 701312 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity
Procedia PDF Downloads 1411311 Amniotic Fluid Stem Cells Ameliorate Cisplatin-Induced Acute Renal Failure through Autophagy Induction and Inhibition of Apoptosis
Authors: Soniya Nityanand, Ekta Minocha, Manali Jain, Rohit Anthony Sinha, Chandra Prakash Chaturvedi
Abstract:
Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.Keywords: amniotic fluid stem cells, acute renal failure, autophagy, cisplatin
Procedia PDF Downloads 106