Search results for: boundary
420 Analytical Determination of Electromechanical Coupling Effects on Interlaminar Stresses of Generally Laminated Piezoelectric Plates
Authors: Atieh Andakhshideh, S. Maleki, Sayed Sadegh Marashi
Abstract:
In this paper, the interlaminar stresses of generally laminated piezoelectric plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to accurately study coupling influence on the edge effects of piezolaminated plates with finite dimensions, arbitrary lamination lay-ups and under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical method or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, first examples are simplified to special cases such as cross-ply or symmetric laminations and are compared with other analytical solutions available in the literature. Excellent agreement is achieved in validation test and other numerical results are presented for general cases. Numerical examples indicate the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to lamination lay-ups of piezoelectric plate is studied in several examples.Keywords: electromechanical coupling, generally laminated piezoelectric plates, Kantorovich method, edge effect, interlaminar stresses
Procedia PDF Downloads 149419 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.Keywords: instability, torsion, flexural, buckling, modified newmark method stability
Procedia PDF Downloads 359418 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 223417 The Ethio-Eritrea Claims Commission on Use of Force: Issue of Self-Defense or Violation of Sovereignty
Authors: Isaias Teklia Berhe
Abstract:
A decision that deals with international disputes, be it arbitral or judicial, has to properly reflect objectivity and coherence with existing rules of international law. This paper shows the decision of the Ethio-Eritrea Claims Commission on the jus ad bellum case is bereft of objectivity and coherence, which contributed a disservice to international law on many aspects. The Commission’s decision that holds Eritrea in contravention to Art 2(4) of the UN Charter based on Ethiopia’s contention is flawed. It fails to consider: the illegitimacy of an actual authority established over contested territory through hostile acts, the proper determination of effectivites under international law, the sanctity of colonially determined boundaries, Ethiopia’s prior firm political recognition and undergirds to respect colonial boundary, and Ethio-Eritrea Border Commission’s decision. The paper will also argue that the Commission confused Eritrea’s right of self-defense with the rule against the non-use of force to settle territorial disputes; wherefore its decision sanitizes or sterilizes unlawful change of territory resulted through unlawful use of force to the effect of advantaging aggressions. The paper likewise argues that the decision is so sacrilegious that it disregards the ossified legal finality of colonial boundaries. Moreover, its approach toward armed attack does not reflect the peculiarity of the jus ad bellum case rather it brings about definitional uncertainties and sustains the perception that the law on self-defense is unsettled.Keywords: armed attack, Eritrea, Ethiopia, self-defense, territorial integrity, use of force
Procedia PDF Downloads 279416 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems
Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo
Abstract:
Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation
Procedia PDF Downloads 93415 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)
Procedia PDF Downloads 325414 The Potential Effect of Climate Changes on Food and Water Associated Infections
Authors: Mohammed A. Alhoot, Rathika A/P Nagarajan
Abstract:
Climate change and variability are affecting human health and diseases direct or indirectly through many mechanisms. Change in rain pattern, an increase of temperature and humidity are showing an increased trend in Malaysia. This will affect the biological, physical and chemical component of water through different pathways and will enhance the risk of waterborne diseases. Besides, the warm temperature and humid climate provide very suitable conditions for the growth of pathogenic bacteria. This study is intended to highlight the relationship between the climate changes and the incidence food and water associated infections. Incidences of food and water associated infection and climate data were collected from Malaysian Ministry of health and Malaysian Metrological Department respectively. Maximum and minimum temperature showed high correlation with incidence of typhoid, hepatitis A, dysentery, food poisoning (P value <0.05 significant with 2 tailed / 0.5<[r]). Heavy rainfall does not associated with any outbreaks. Climate change brings out new challenges in controlling food and water associated infections. Adaptation strategies should involve all key stakeholders with a strong regional cooperation to prevent and deal with cross-boundary health crises. Moreover, the role of health care personnel at local, state and national levels is important to ensure the success of these programmes. As has been shown herein, climate variability is an important element influencing the food and water associated epidemiology in Malaysia. The results of this study are crucial to implementing climate changes as a factor to reduce any future outbreaks.Keywords: climate change, typhoid, hepatitis A, dysentery, food poisoning
Procedia PDF Downloads 309413 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy
Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez
Abstract:
Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness
Procedia PDF Downloads 205412 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation
Procedia PDF Downloads 461411 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis
Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba
Abstract:
In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece
Procedia PDF Downloads 274410 Euler-Bernoulli’s Approach for Buckling Analysis of Thick Rectangular Plates Using Alternative I Refined Theory
Authors: Owus Mathias Ibearugbulem
Abstract:
The study presents Euler-Bernoulli’s approach for buckling analysis of thick rectangular plates using alternative I refined theory. No earlier study, to the best knowledge of the author, based on the literature available to this research, applied Euler-Bernoulli’s approach in the alternative I refined theory for buckling analysis of thick rectangular plates. In this study, basic kinematics and constitutive relations for thick rectangular plates are employed in the differential equations of equilibrium of stresses in a deformable elemental body to obtain alternative I governing differential equations of thick rectangular plates and the corresponding compatibility equations. Solving these equations resulted in a general deflection function of a thick rectangular plate. Using this function and satisfying the boundary conditions of three plates, their peculiar deflection functions are obtained. Going further, the study determined the non-dimensional critical buckling loads of the six plates. Values of the non-dimensional critical buckling load from the present study are compared with those from a three-dimensional buckling analysis of a thick plate. The highest percentage difference recorded for the plates: all edges simply supported (ssss), all edges clamped (cccc) and adjacent edges clamped with the other edges simply supported (ccss) are 3.31%, 5.57% and 3.38% respectively.Keywords: Euler-Bernoulli, buckling, alternative I, kinematics, constitutive relation, governing differential equation, compatibility equation, thick plate
Procedia PDF Downloads 33409 Modelling the Impacts of Geophysical Parameters on Deforestation and Forest Degradation in Pre and Post Ban Logging Periods in Hindu Kush Himalayas
Authors: Alam Zeb, Glen W. Armstrong, Muhammad Qasim
Abstract:
Loss of forest cover is one of the most important land cover changes and has been of great concern to policy makers. This study quantified forest cover changes over pre logging ban (1973-1993) and post logging ban (1993-2015) to examine the role of geophysical factors and spatial attributes of land in the two periods. We show that despite a complete ban on green felling, forest cover decreased by 28% and mostly converted to rangeland. Nevertheless, the logging ban was completely effective in controlling agriculture expansion. The binary logistic regression revealed that the south facing aspects at low elevation witnessed more deforestation in the pre-ban period compared to post-ban. Opposite to deforestation, forest degradation was more prominent on the northern aspects at higher elevation during the policy period. Agriculture expansion was widespread in the low elevation flat areas with gentle slope, while during the policy period agriculture contraction in the form of regeneration was observed on the low elevation areas of north facing slopes. All proximity variables, except distance to administrative boundary, showed a similar trend across the two periods and were important explanatory variables in understanding forest and agriculture expansion. The changes in determinants of forest and agriculture expansion and contraction over the two periods might be attributed to the influence of policy and a general decrease in resource availability.Keywords: forest conservation , wood harvesting ban, logistic regression, deforestation, forest degradation, agriculture expansion, Chitral, Pakistan
Procedia PDF Downloads 232408 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics
Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih
Abstract:
Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability
Procedia PDF Downloads 158407 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents
Authors: Subir Gupta, Subhas Ganguly
Abstract:
In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure
Procedia PDF Downloads 200406 Impact of Data and Model Choices to Urban Flood Risk Assessments
Authors: Abhishek Saha, Serene Tay, Gerard Pijcke
Abstract:
The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.Keywords: flooding, DEM, shallow water equations, subgrid
Procedia PDF Downloads 142405 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study
Authors: Atif Zafar, Fan Haijun
Abstract:
A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.Keywords: field development plan, reservoir characterization, reservoir engineering, well test analysis
Procedia PDF Downloads 366404 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test
Authors: A. Khodabakhshi, A. Mortazavi
Abstract:
Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.Keywords: deformation modulus, numerical model, plate loading test, rock mass
Procedia PDF Downloads 171403 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM
Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins
Abstract:
In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS
Procedia PDF Downloads 262402 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 411401 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever
Authors: Ciaran Conway, Nick Jeffers, Jeff Punch
Abstract:
With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.Keywords: aerodynamics, oscillating cantilevers, PIV, vortices
Procedia PDF Downloads 218400 The Imminent Other in Anna Deavere Smith’s Performance
Authors: Joy Shihyi Huang
Abstract:
This paper discusses the concept of community in Anna Deavere Smith’s performance, one that challenges and explores existing notions of justice and the other. In contrast to unwavering assumptions of essentialism that have helped to propel a discourse on moral agency within the black community, Smith employs postmodern ideas in which the theatrical attributes of doubling and repetition are conceptualized as part of what Marvin Carlson coined as a ‘memory machine.’ Her dismissal of the need for linear time, such as that regulated by Aristotle’s The Poetics and its concomitant ethics, values, and emotions as a primary ontological and epistemological construct produced by the existing African American historiography, demonstrates an urgency to produce an alternative communal self to override metanarratives in which the African Americans’ lives are contained and sublated by specific historical confines. Drawing on Emmanuel Levinas’ theories in ethics, specifically his notion of ‘proximity’ and ‘the third,’ the paper argues that Smith enacts a new model of ethics by launching an acting method that eliminates the boundary of self and other. Defying psychological realism, Smith conceptualizes an approach to acting that surpasses the mere mimetic value of invoking a ‘likeness’ of an actor to a character, which as such, resembles the mere attribution of various racial or sexual attributes in identity politics. Such acting, she contends, reduces the other to a representation of, at best, an ultimate rendering of me/my experience. She instead appreciates ‘unlikeness,’ recognizes the unavoidable actor/character gap as a power that humbles the self, whose irreversible journey to the other carves out its own image.Keywords: Anna Deavere Smith, Emmanuel Levinas, other, performance
Procedia PDF Downloads 155399 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption
Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout
Abstract:
The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob
Procedia PDF Downloads 278398 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region
Authors: Pratibha, Jyoti Kori
Abstract:
Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor
Procedia PDF Downloads 186397 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 272396 The Factors Constitute the Interaction between Teachers and Students: An Empirical Study at the Notion of Framing
Authors: Tien-Hui Chiang
Abstract:
The code theory, proposed by Basil Bernstein, indicates that framing can be viewed as the core element in constituting the phenomenon of cultural reproduction because it is able to regulate the transmission of pedagogical information. Strong framing increases the social relation boundary between a teacher and pupils, which obstructs information transmission, so that in order to improve underachieving students’ academic performances, teachers need to reduce to strength of framing. Weak framing enables them to transform academic knowledge into commonsense knowledge in daily life language. This study posits that most teachers would deliver strong framing due to their belief mainly confined within the aspect of instrumental rationality that deprives their critical minds. This situation could make them view the normal distribution bell curve of students’ academic performances as a natural outcome. In order to examine the interplay between framing, instrumental rationality and pedagogical action, questionnaires were completed by over 5,000 primary school teachers in Henan province, China, who were stratified sample. The statistical results show that most teachers employed psychological concepts to measure students’ academic performances and, in turn, educational inequity was legitimatized as a natural outcome in the efficiency-led approach. Such efficiency-led minds made them perform as the agent practicing the mechanism of social control and in turn sustaining the phenomenon of cultural reproduction.Keywords: code, cultural reproduction, framing, instrumental rationality, social relation and interaction
Procedia PDF Downloads 152395 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change
Authors: Juan Carlos Baena, Zhongxiao Peng
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.Keywords: hardness, surface bearing, tribological system, UHMWPE, wear
Procedia PDF Downloads 272394 Life Cycle Assessment of Almond Processing: Off-ground Harvesting Scenarios
Authors: Jessica Bain, Greg Thoma, Marty Matlock, Jeyam Subbiah, Ebenezer Kwofie
Abstract:
The environmental impact and particulate matter emissions (PM) associated with the production and packaging of 1 kg of almonds were evaluated using life cycle assessment (LCA). The assessment began at the point of ready to harvest with a system boundary was a cradle-to-gate assessment of almond packaging in California. The assessment included three scenarios of off-ground harvesting of almonds. The three general off-ground harvesting scenarios with variations include the harvested almonds solar dried on a paper tarp in the orchard, the harvested almonds solar dried on the floor in a separate lot, and the harvested almonds dried mechanically. The life cycle inventory (LCI) data for almond production were based on previously published literature and data provided by Almond Board of California (ABC). The ReCiPe 2016 method was used to calculate the midpoint impacts. Using consequential LCA model, the global warming potential (GWP) for the three harvesting scenarios are 2.90, 2.86, and 3.09 kg CO2 eq/ kg of packaged almond for scenarios 1, 2a, and 3a, respectively. The global warming potential for conventional harvesting method was 2.89 kg CO2 eq/ kg of packaged almond. The particulate matter emissions for each scenario per hectare for each off-ground harvesting scenario is 77.14, 9.56, 66.86, and 8.75 for conventional harvesting and scenarios 1, 2, and 3, respectively. The most significant contributions to the overall emissions were from almond production. The farm gate almond production had a global warming potential of 2.12 kg CO2 eq/ kg of packaged almond, approximately 73% of the overall emissions. Based on comparisons between the GWP and PM emissions, scenario 2a was the best tradeoff between GHG and PM production.Keywords: life cycle assessment, low moisture foods, sustainability, LCA
Procedia PDF Downloads 84393 Numerical Investigation of a New Two-Fluid Model for Semi-Dilute Polymer Solutions
Authors: Soroush Hooshyar, Mohamadali Masoudian, Natalie Germann
Abstract:
Many soft materials such as polymer solutions can develop localized bands with different shear rates, which are known as shear bands. Using the generalized bracket approach of nonequilibrium thermodynamics, we recently developed a new two-fluid model to study shear banding for semi-dilute polymer solutions. The two-fluid approach is an appropriate means for describing diffusion processes such as Fickian diffusion and stress-induced migration. In this approach, it is assumed that the local gradients in concentration and, if accounted for, also stress generate a nontrivial velocity difference between the components. Since the differential velocity is treated as a state variable in our model, the implementation of the boundary conditions arising from the derivative diffusive terms is straightforward. Our model is a good candidate for benchmark simulations because of its simplicity. We analyzed its behavior in cylindrical Couette flow, a rectilinear channel flow, and a 4:1 planar contraction flow. The latter problem was solved using the OpenFOAM finite volume package and the impact of shear banding on the lip and salient vortices was investigated. For the other smooth geometries, we employed a standard Chebyshev pseudospectral collocation method. The results showed that the steady-state solution is unique with respect to initial conditions, deformation history, and the value of the diffusivity constant. However, smaller the value of the diffusivity constant is, the more time it takes to reach the steady state.Keywords: nonequilibrium thermodynamics, planar contraction, polymer solutions, shear banding, two-fluid approach
Procedia PDF Downloads 333392 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb
Authors: Sebai Amal, Massuel Sylvain
Abstract:
Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.Keywords: Hydrodynamic modeling, lithological modeling, hydraulic, semi-arid, merguellil, central Tunisia
Procedia PDF Downloads 764391 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 137