Search results for: angle of inclination
663 Implementing Two Rotatable Circular Polarized Glass Made Window to Reduce the Amount of Electricity Usage by Air Condition System
Authors: Imtiaz Sarwar
Abstract:
Air conditioning in homes may account for one-third of the electricity during period in summer when most of the energy is required in large cities. It is not consuming only electricity but also has a serious impact on environment including greenhouse effect. Circular polarizer filter can be used to selectively absorb or pass clockwise or counter-clock wise circularly polarized light. My research is about putting two circular polarized glasses parallel to each other and make a circular window with it. When we will place two circular polarized glasses exactly same way (0 degree to each other) then nothing will be noticed rather it will work as a regular window through which all light and heat can pass on. While we will keep rotating one of the circular polarized glasses, the angle between the glasses will keep increasing and the window will keep blocking more and more lights. It will completely block all the lights and a portion of related heat when one of the windows will reach 90 degree to another. On the other hand, we can just open the window when fresh air is necessary. It will reduce the necessity of using Air condition too much or consumer will use electric fan rather than air conditioning system. Thus, we can save a significant amount of electricity and we can go green.Keywords: circular polarizer, window, air condition, light, energy
Procedia PDF Downloads 609662 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles
Authors: Mahmoud Said Jneid, Péter Harth
Abstract:
EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control
Procedia PDF Downloads 83661 Model Studies on Use of Coal Mine Waste and Modified Clay Soil as Fill Material for Embankments and Foundations
Authors: K. Suresh, M. Padmavathi, N. Darga Kumar
Abstract:
The objective of this study is to investigate the significance of coal mine waste and improved clay soil when used as a fill and for the construction of embankment. To determine the bearing capacities of coal mine waste and improved clay soil, tests are conducted apart from laboratory experiments. PLAXIS 2D software is used to make the analysis simpler. Depending upon the bearing capacities obtained for different cases, a conclusion can be drawn. Load carrying capacities are determined for coal mine waste, clay and by altering their height ratio when clay (H2) is at the bottom, and coal mine waste (H1) is on the top with three different cases (H = 0.25H1 + 0.75H2, 0.5H1 + 0.5H2, 0.75H1 + 0.25H2) in addition to this bearing capacity of improved clay soil (by replacing clay with 10% CMW, 30% CMW and 50% CMW in addition polycom) is also determined. The safe height of the embankment that can be constructed with the improved clay for different slopes, i.e., for 1:1, 1.5: 1, 2: 1 is also determined by using PLAXIS 2D software by limiting the factor of safety to 1.5.Keywords: cohesion, angle of shearing resistance, elastic modulus, coefficient of consolidation, coal mine waste
Procedia PDF Downloads 18660 FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix
Authors: Soumitr Sanjay Dubey, Shubhajit Roy Chowdhury, Rahul Shrestha
Abstract:
In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz.Keywords: coordinate rotation digital computer, three angle complex rotation, triangular systolic array, QR algorithm
Procedia PDF Downloads 415659 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine
Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski
Abstract:
The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization
Procedia PDF Downloads 387658 Estimation of Global and Diffuse Solar Radiation Studies of Islamabad, Capital City of Pakistan
Authors: M. Akhlaque Ahmed, Maliha Afshan, Adeel Tahir
Abstract:
Global and diffuse solar radiation studies have been carried out for the Capital city of Pakistan, Islamabad ( latitude 330 43’N and Longitude 370 71’E) to assess the solar potential of the area. The global and diffuse solar radiation were carried out using sunshine hour data for the above-mentioned area. Monthly total solar radiation is calculated through regression constants a and b through declination angle of the sun and sunshine hours and KT that is cloudiness index are used to calculate the diffuse solar radiation. Result obtained shows variation in the direct and diffuse component of solar radiation in summer and winter months for Islamabad. Diffuse solar radiation was found maximum in July, i.e., 32% whereas direct or beam radiation was found to be high in April to June, i.e., 73%. During July, August, and December, the sky was found cloudy. From the result, it appears that with the exception of monsoon month July and August the solar energy can be utilized very efficiently throughout the year in Islamabad.Keywords: global radiation, Islamabad, diffuse radiation, sky condition, sunshine hour
Procedia PDF Downloads 168657 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition
Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu
Abstract:
Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal
Procedia PDF Downloads 200656 Awning: An Unsung Trait in Rice (Oryza Sativa L.)
Authors: Chamin Chimyang
Abstract:
The fast-changing global trend and declining forest region have impacted agricultural lands; animals, especially birds, might become one of the major pests in the near future and go neglected or unreported in many kinds of literature and events, which is mainly because of bird infestation being a pocket-zone problem. This bird infestation can be attributed to the balding of the forest region and the decline in their foraging hotspot due to anthropogenic activity. There are many ways to keep away the birds from agricultural fields, both conventional and non-conventional. But the question here is whether the traditional approach of bird scarring methods such as scare-crows are effective enough. There are many traits in rice that are supposed to keep the birds away from foraging in paddy fields, and the selection of such traits might be rewarding, such as the angle of the flag leaf from the stem, grain size, novelty of any trait in that particular region and also an awning. Awning, as such, is a very particular trait on which negative selection was imposed to such an extent that there has been a decline in the nucleotide responsible for the said trait. Thus, in this particular session, histology, genetics, genes behind the trait and how awns might be one of the solutions to the problem stated above will be discussed in detail.Keywords: bird infestation, awning, negative selection, domestication
Procedia PDF Downloads 28655 Investigation of Flow Effects of Soundwaves Incident on an Airfoil
Authors: Thirsa Sherry, Utkarsh Shrivastav, Kannan B. T., Iynthezhuton K.
Abstract:
The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters.Keywords: engine noise, aeroacoustics, acoustic excitation, low speed
Procedia PDF Downloads 93654 Studies of Substituent and Solvent Effect on Spectroscopic Properties Of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 Coumarin
Authors: Sanjay Kumar
Abstract:
This paper reports the solvent effects on the electronic absorption and fluorescence emission spectra of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 coumarin derivatives having -OH, -CH3 and -CF3 substituent at different positions in various solvents (Polar and Non-Polar). The first excited singlet state dipole moment and ground state dipole moment were calculated using Bakhshiev, Kawski-Chamma-Viallet and Reichardt-Dimroth equations and were compared for all the coumarin studied. In all cases the dipole moments were found to be higher in the excited singlet state than in the ground state indicating a substantial redistribution of Π-electron density in the excited state. The angle between the excited singlet state and ground state dipole moment is also calculated. The red shift of the absorption and fluorescence emission bands, observed for all the coumarin studied upon increasing the solvent polarity indicating that the electronic transitions were Π → Π* nature.Keywords: coumarin, solvent effects, absorption spectra, emission spectra, excited singlet state dipole moment, ground state dipole moment, solvatochromism
Procedia PDF Downloads 833653 Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties
Authors: Ko-Shao Chen, Yun Tsao, Chia-Hsuan Tsen, Chien-Chung Chen, Shu-Chuan Liao
Abstract:
Electrospun microtube array membranes (MTAMs) made of PLLA (poly-L-lactic acid) have wide potential applications in tissue engineering. However, their surface hydrophobicity and poor biocompatability have limited their further usage. In this study, the surface of PLLA MTAMs were made hydrophilic by introducing extra functional groups, such as peroxide, via an acetic acid plasma (AAP). UV-graft polymerization of acrylic acid (G-AAc) was then used to produce carboxyl group on MTAMs surface, which bonded covalently with chitosan through EDC / NHS crosslinking agents. To evaluate the effects of the surface modification on PLLA MTAMs, water contact angle (WCA) measurement and cell compatibility tests were carried out. We found that AAP treated electrospun PLLA MTAMs grafted with AAc and, finally, with chitosan immobilized via crosslinking agent, exhibited improved hydrophilic and cell compatibility.Keywords: plasma, EDC/NHS, UV grafting, Chitosan, microtube array membrane (MTAMs)
Procedia PDF Downloads 411652 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication
Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan
Abstract:
We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers
Procedia PDF Downloads 159651 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor
Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young
Abstract:
In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy
Procedia PDF Downloads 417650 Farmers’ Perception, Willingness and Capacity in Utilization of Household Sewage Sludge as Organic Resources for Peri-Urban Agriculture around Jos Nigeria
Authors: C. C. Alamanjo, A. O. Adepoju, H. Martin, R. N. Baines
Abstract:
Peri-urban agriculture in Jos Nigeria serves as a major means of livelihood for both urban and peri-urban poor, and constitutes huge commercial inclination with a target market that has spanned beyond Plateau State. Yet, the sustainability of this sector is threatened by intensive application of urban refuse ash contaminated with heavy metals, as a result of the highly heterogeneous materials used in ash production. Hence, this research aimed to understand the current fertilizer employed by farmers, their perception and acceptability in utilization of household sewage sludge for agricultural purposes and their capacity in mitigating risks associated with such practice. Mixed methods approach was adopted, and data collection tools used include survey questionnaire, focus group discussion with farmers, participants and field observation. The study identified that farmers maintain a complex mixture of organic and chemical fertilizers, with mixture composition that is dependent on fertilizer availability and affordability. Also, farmers have decreased the rate of utilization of urban refuse ash due to labor and increased logistic cost and are keen to utilize household sewage sludge for soil fertility improvement but are mainly constrained by accessibility of this waste product. Nevertheless, farmers near to sewage disposal points have commenced utilization of household sewage sludge for improving soil fertility. Farmers were knowledgeable on composting but find their strategic method of dewatering and sun drying more convenient. Irrigation farmers were not enthusiastic for treatment, as they desired both water and sludge. Secondly, household sewage sludge observed in the field is heterogeneous due to nearness between its disposal point and that of urban refuse, which raises concern for possible cross-contamination of pollutants and also portrays lack of extension guidance as regards to treatment and management of household sewage sludge for agricultural purposes. Hence, farmers concerns need to be addressed, particularly in providing extension advice and establishment of decentralized household sewage sludge collection centers, for continuous availability of liquid and concentrated sludge. Urgent need is also required for the Federal Government of Nigeria to increase commitment towards empowering her subsidiaries for efficient discharge of corporate responsibilities.Keywords: ash, farmers, household, peri-urban, refuse, sewage, sludge, urban
Procedia PDF Downloads 140649 Structuring of Multilayer Aluminum Nickel by Lift-off Process Using Cheap Negative Resist
Authors: Muhammad Talal Asghar
Abstract:
The lift-off technique of the photoresist for metal patterning in integrated circuit (IC) packaging has been widely utilized in the field of microelectromechanical systems and semiconductor component manufacturing. The main advantage lies in cost-saving, reduction in complexity, and maturity of the process. The selection of photoresist depends upon many factors such as cost, the thickness of the resist, comfortable and valuable parameters extraction. In the present study, an extremely cheap dry film photoresist E8015 of thickness 38-micrometer is processed for the first time for edge profiling, according to the author's best knowledge. Successful extraction of the helpful parameter range for resist processing is performed. An undercut angle of 66 to 73 degrees is realized by parameter variation like exposure energy and development time. Finally, 10-micrometer thick metallic multilayer aluminum nickel is lifted off on the plain silicon wafer. Possible applications lie in controlled self-propagating reactions within structured metallic multilayer that may be utilized for IC packaging in the future.Keywords: lift-off, IC packaging, photoresist, multilayer
Procedia PDF Downloads 212648 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation
Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki
Abstract:
Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.Keywords: geotechnical properties, Kati formation, uncemented sandstone, oedometer test; shear box test
Procedia PDF Downloads 156647 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System
Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia
Abstract:
Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID
Procedia PDF Downloads 84646 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert
Authors: A. Sherif, A. El Zafarany, R. Arafa
Abstract:
Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for day-lighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.Keywords: energy, hospital, intensive care units, shading
Procedia PDF Downloads 289645 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee
Abstract:
In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation
Procedia PDF Downloads 522644 Optical Properties of a One Dimensional Graded Photonic Structure Based on Material Length Redistribution
Authors: Danny Manuel Calvo Velasco, Robert Sanchez Cano
Abstract:
By using the transference matrix formalism, in this work, it is presented the study of the optical properties of the 1D graded structure, constructed by multiple bi-layers of dielectric and air, considering a redistribution of the material lengths following an arithmetic progression as a function of two parameters. It is presented a factorization for the transference matrices for the graded structure, which allows the interpretation of their optical properties in terms of the properties of simpler structures. It is shown that the graded structure presents new transmission peaks, which can be controlled by the parameter values located in frequencies for which a periodic system has a photonic bandgap. This result is extended to the case of a photonic crystal for which the unitary cell is the proposed graded structure, showing new transmission bands which are due to the multiple new sub-structures present in the system. Also, for the TE polarization, it is observed transmission bands' low frequencies which present low variation of its width and position with the incidence angle. It is expected that these results could guide a route in the design of new photonic devices.Keywords: graded, material redistribution, photonic system, transference matrix
Procedia PDF Downloads 139643 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests
Authors: Ergun Guntekin
Abstract:
Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.Keywords: compression tests, elastic constants, fir wood, ultrasound
Procedia PDF Downloads 218642 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code
Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi
Abstract:
To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.Keywords: attenuation, EXVol, detection efficiency, volume source
Procedia PDF Downloads 185641 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 414640 Golden Brain Theory (GBT) for Language Learning
Authors: Tapas Karmaker
Abstract:
Centuries ago, we came to know about ‘Golden Ratio’ also known as Golden Angle. The idea of this research is based on this theme. Researcher perceives ‘The Golden Ratio’ in terms of harmony, meaning that every single item in the universe follows a harmonic behavior. In case of human being, brain responses easily and quickly to this harmony to help memorization. In this theory, harmony means a link. This study has been carried out on a segment of school students and a segment of common people for a period of three years from 2003 to 2006. The research in this respect intended to determine the impact of harmony in the brain of these people. It has been found that students and common people can increase their memorization capacity as much as 70 times more by applying this method. This method works faster and better between age of 8 and 30 years. This result was achieved through tests to assess memorizing capacity by using tools like words, rhymes, texts, math and drawings. The research concludes that this harmonic method can be applied for improving the capacity of learning languages, for the better quality of lifestyle, or any other terms of life as well as in professional activity.Keywords: language, education, golden brain, learning, teaching
Procedia PDF Downloads 202639 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle
Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief
Abstract:
An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD
Procedia PDF Downloads 378638 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings
Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne
Abstract:
This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence
Procedia PDF Downloads 162637 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine
Authors: Hisham Elmouazen, Xiaobing Zhang
Abstract:
In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections
Procedia PDF Downloads 75636 Dual-Band Microwave Metamaterial Absorber Using Modified Circular Ring Resonator for Sensor Applications
Authors: Ramesh Amugothu, Vakula Damera, Narasimha Sarma N. V. S.
Abstract:
This study presents a dual-band metamaterial microwave absorber that functions at frequencies of 3.5 GHz and 5.7 GHz. The design comprises modified ring and rectangular patch resonators fabricated on an FR4 dielectric substrate with a ground layer beneath it, emphasizing simplicity. Each absorption frequency is independent and can be individually adjusted by altering the dimensions of the respective resonator structures. The unit cell of the absorber is simulated and optimized parametrically using high-frequency structure simulator (HFSS) software. The mechanism behind the absorption is examined through surface current analysis as well as the symmetric model method. The absorber demonstrates over 97% absorption at both resonant frequencies and is shown to be suitable for sensing applications related to dielectric constant measurement. With its straightforward design, wide-angle acceptance, and polarization-insensitive characteristics, the proposed absorber is likely to be beneficial for both absorption and sensing purposes.Keywords: absorption, dielectric permittivity, metamaterials, metasurfaces, resonant structures, sensor devices
Procedia PDF Downloads 10635 Optimized Control of Roll Stability of Missile using Genetic Algorithm
Authors: Pham Van Hung, Nguyen Trong Hieu, Le Quoc Dinh, Nguyen Kiem Chien, Le Dinh Hieu
Abstract:
The article focuses on the study of automatic flight control on missiles during operation. The quality standards and characteristics of missile operations are very strict, requiring high stability and accurate response to commands within a relatively wide range of work. The study analyzes the linear transfer function model of the Missile Roll channel to facilitate the development of control systems. A two-loop control structure for the Missile Roll channel is proposed, with the inner loop controlling the Missile Roll rate and the outer loop controlling the Missile Roll angle. To determine the optimal control parameters, a genetic algorithm is applied. The study uses MATLAB simulation software to implement the genetic algorithm and evaluate the quality of the closed-loop system. The results show that the system achieves better quality than the original structure and is simple, reliable, and ready for implementation in practical experiments.Keywords: genetic algorithm, roll chanel, two-loop control structure, missile
Procedia PDF Downloads 91634 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots
Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee
Abstract:
Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor
Procedia PDF Downloads 288