Search results for: semantic sign
828 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 91827 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 96826 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining
Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi
Abstract:
Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory
Procedia PDF Downloads 401825 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 294824 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 520823 Phraseologisms With The Spices And Food Additives Component In Polish And Russian. Lexical And Semantic Aspects
Authors: Oliwia Bator
Abstract:
The subject of this description is phraseologisms with the component “spices and food additives component" in Polish and Russian. The purpose of the study is to analyze the phraseologisms from the point of view of lexis and semantics. The material for analysis was extracted from Phraseological Dictionaries of Polish and Russian. The phraseologisms were considered from the lexical point of view, taking into account the name of the " spices and food additives" component, which forms them. From the semantic point of view, 12 semantic groups of phraseologisms were separated in Polish, while 9 semantic groups were separated in Russian. In addition is shown their functioning in the contexts of contemporary Polish and Russian. The contexts were taken from the National Corpus of the Polish Language and the National Corpus of the Russian Language.Keywords: phraseology, language, slavic studies, linguistics
Procedia PDF Downloads 36822 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: knowledge management systems, ontologies, semantic web, open educational resources
Procedia PDF Downloads 497821 Alive Cemeteries with Augmented Reality and Semantic Web Technologies
Authors: Tamás Matuszka, Attila Kiss
Abstract:
Due the proliferation of smartphones in everyday use, several different outdoor navigation systems have become available. Since these smartphones are able to connect to the Internet, the users can obtain location-based information during the navigation as well. The users could interactively get to know the specifics of a particular area (for instance, ancient cultural area, Statue Park, cemetery) with the help of thus obtained information. In this paper, we present an Augmented Reality system which uses Semantic Web technologies and is based on the interaction between the user and the smartphone. The system allows navigating through a specific area and provides information and details about the sight an interactive manner.Keywords: augmented reality, semantic web, human computer interaction, mobile application
Procedia PDF Downloads 338820 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 366819 Russian Spatial Impersonal Sentence Models in Translation Perspective
Authors: Marina Fomina
Abstract:
The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject
Procedia PDF Downloads 369818 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
Authors: Mahya Naghipoor
Abstract:
Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.Keywords: lung cancer, radiomics, computer tomography, mutation
Procedia PDF Downloads 165817 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 394816 Reverse Logistics Information Management Using Ontological Approach
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data.Keywords: Reverse Logistics, information management, heterogeneity, ontologies, semantic web
Procedia PDF Downloads 490815 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts
Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel
Abstract:
We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.Keywords: deep-learning approach, object-classes, semantic classification, Arabic
Procedia PDF Downloads 85814 Real-Time Gesture Recognition System Using Microsoft Kinect
Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar
Abstract:
Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language
Procedia PDF Downloads 303813 Combining Instance-Based and Reasoning-Based Approaches for Ontology Matching
Authors: Abderrahmane Khiat, Moussa Benaissa
Abstract:
Due to the increasing number of sources of information available on the web and their distribution and heterogeneity, ontology alignment became a very important and inevitable problem to ensure semantic interoperability. Instance-based ontology alignment is based on the comparison of the extensions of concepts; and represents a very promising technique to find semantic correspondences between entities of different ontologies. In practice, two situations may arise: ontologies that share many common instances and ontologies that share few or do not share common instances. In this paper, we describe an approach to manage the latter case. This approach exploits the reasoning on ontologies in order to create a corpus of common instances. We show that it is theoretically powerful because it is based on description logics and very useful in practice. We present the experimental results obtained by running our approach on ontologies of OAEI 2012 benchmark test. The results show the performance of our approach.Keywords: description logic inference, instance-based ontology alignment, semantic interoperability, semantic web
Procedia PDF Downloads 443812 Cultural Artifact, Sign Language and Perspectives of Meaning in Select-Nollywood Films
Authors: Aniekan James Akpan
Abstract:
The use of signs and symbols to represent cardinal information is inalienable among African communities. It has been the tenable instrument of cultural transmission for decades, but in the current transposal of Western values, a good number of communicating codes and symbolic images have been gradually relegated to the background. This paper discusses the regeneration of cultural artifacts and sign languages in Nigerian films using Johnpaul Rebecca and Ayamma as models in a qualitative research based on Charles Sanders Pierce's Semiotics as well as quantitative methods of survey using questionnaire and focus group discussion as instruments to obtain data. With a population of 2,343 viewers of the movies used for the study and a sample size of 322 respondents using Philip Meyer’s guide, findings show that cultural relics can stabilise the subject matter of a film. Artifacts can stimulate curiosity and invoke nostalgia. Sign languages encode deeper information that ordinary speech may not properly convey in films. It concludes that the use of non-verbal codes in filmmaking deserves deep research into the culture portrayed and that non-verbal cues communicate deeper information about a people's cosmos in a film than dialogue. It recommends that adequate research should be made before producing a film and the idea of cultural values represented in artifacts and sign language should be ingrained in the courses for students to acquaint themselves with.Keywords: cultural artifact, Nollywood films, non-verbal communication, sign language
Procedia PDF Downloads 41811 Semantic Preference across Research Articles: A Corpus-Based Study of Adjectives in English
Authors: Valdênia Carvalho e Almeida
Abstract:
The goal of the present study is to investigate the semantic preference of the most frequent adjectives in research articles through a corpus-based analysis of texts published in journals in Applied Linguistics (AL). The corpus used in this study contains texts published in the period from 2014 to 2018 in the three journals: Language Learning and Technology; English for Academic Purposes, and TESOL Quaterly, totaling more than one million words. A corpus-based analysis was carried out on the corpus to identify the most frequent adjectives that co-occurred in the three journals. By observing the concordance lines of the adjectives and analyzing the words they associated with, the semantic preferences of each adjective were determined. Later, the AL corpus analysis was compared to the investigation of the same adjectives in a corpus of Chemistry. This second part of the study aimed to identify possible differences and similarities between the two corpora in relation to the use of the adjectives in research articles from both areas. The results show that there are some preferences which seem to be closely related not only to the academic genre of the texts but also to the specific domain of the discipline and, to a lesser extent, to the context of research in each journal. This research illustrates a possible contribution of Corpus Linguistics to explore the concept of semantic preference in more detail, considering the complex nature of the phenomenon.Keywords: applied linguistics, corpus linguistics, chemistry, research article, semantic preference
Procedia PDF Downloads 184810 TechWhiz: Empowering Deaf Students through Inclusive Education
Authors: Paula Escudeiro, Nuno Escudeiro, Márcia Campos, Francisca Escudeiro
Abstract:
In today's world, technical and scientific knowledge plays a vital role in education, research, and employment. Deaf students face unique challenges in educational settings, particularly when it comes to understanding technical and scientific terminology. The reliance on written and spoken languages can create barriers for deaf individuals who primarily communicate using sign language. This lack of accessibility can hinder their learning experience and compromise equity in education. To address this issue, the TechWhiz project has been developed as a comprehensive glossary of scientific and technical concepts explained in sign language. By providing deaf students with access to education in their first language, TechWhiz aims to enhance their learning achievements and promote inclusivity while also fostering equity in education for all students.Keywords: deaf students, technical and scientific knowledge, automatic sign language, inclusive education
Procedia PDF Downloads 66809 Assessing Language Dominance in Mexican Deaf Signers with the Bilingual Language Profile (BLP)
Authors: E. Mendoza, D. Jackson-Maldonado, G. Avecilla-Ramírez, A. Mondaca
Abstract:
Assessing language proficiency is a major issue in psycholinguistic research. There are multiple tools that measure language dominance and language proficiency in hearing bilinguals, however, this is not the case for Deaf bilinguals. Specifically, there are few, if not none, assessment tools useful in the description of the multilingual abilities of Mexican Deaf signers. Because of this, the linguistic characteristics of Mexican Deaf population have been poorly described. This paper attempts to explain the necessary changes done in order to adapt the Bilingual Language Profile (BLP) to Mexican Sign Language (LSM) and written/oral Spanish. BLP is a Self-Evaluation tool that has been adapted and translated to several oral languages, but not to sign languages. Lexical, syntactic, cultural, and structural changes were applied to the BLP. 35 Mexican Deaf signers participated in a pilot study. All of them were enrolled in Higher Education programs. BLP was presented online in written Spanish via Google Forms. No additional information in LSM was provided. Results show great heterogeneity as it is expected of Deaf populations and BLP seems to be a useful tool to create a bilingual profile of the Mexican Deaf population. This is a first attempt to adapt a widely tested tool in bilingualism research to sign language. Further modifications need to be done.Keywords: deaf bilinguals, assessment tools, bilingual language profile, mexican sign language
Procedia PDF Downloads 151808 Hand Detection and Recognition for Malay Sign Language
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara
Abstract:
Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.Keywords: hand detection, hand gesture, hand recognition, sign language
Procedia PDF Downloads 304807 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 312806 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 350805 Transmigration of American Sign Language from the American Deaf Community to the American Society
Authors: Russell Rosen
Abstract:
American Sign Language (ASL) has been developed and used by signing deaf and hard of hearing (DHH) individuals in the American Deaf community since early nineteenth century. In the last two decades, secondary schools in the US offered ASL for foreign language credit to secondary school learners. The learners who learn ASL as a foreign language are largely American native speakers of English. They not only learn ASL in US schools but also create spaces under certain interactional and social conditions in their home communities outside of classrooms and use ASL with each other instead of their native English. This phenomenon is a transmigration of language from a native social group to a non-native, non-kin social group. This study looks at the transmigration of ASL from signing Deaf community to the general speaking and hearing American society. Theoretical implications of this study are discussed.Keywords: American Sign Language, Foreign Language, Language transmission, United States
Procedia PDF Downloads 417804 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 121803 Parallel Querying of Distributed Ontologies with Shared Vocabulary
Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane
Abstract:
Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.Keywords: distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL
Procedia PDF Downloads 202802 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 365801 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information
Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script which is a series of texts including directions and dialogues. The other is blogposts which possesses relatively abstracted contents, stories and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. In order to improve the quality of topics, it needs a method to consider the word difference. In this paper, we introduce a semantic vocabulary expansion method to solve the word difference. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can learn more salient topics for broadcasting contents.Keywords: broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec
Procedia PDF Downloads 250800 Lexical-Semantic Deficits in Sinhala Speaking Persons with Post Stroke Aphasia: Evidence from Single Word Auditory Comprehension Task
Authors: D. W. M. S. Samarathunga, Isuru Dharmarathne
Abstract:
In aphasia, various levels of symbolic language processing (semantics) are affected. It is shown that Persons with Aphasia (PWA) often experience more problems comprehending some categories of words than others. The study aimed to determine lexical semantic deficits seen in Auditory Comprehension (AC) and to describe lexical-semantic deficits across six selected word categories. Thirteen (n =13) persons diagnosed with post-stroke aphasia (PSA) were recruited to perform an AC task. Foods, objects, clothes, vehicles, body parts and animals were selected as the six categories. As the test stimuli, black and white line drawings were adapted from a picture set developed for semantic studies by Snodgrass and Vanderwart. A pilot study was conducted with five (n=5) healthy nonbrain damaged Sinhala speaking adults to decide familiarity and applicability of the test material. In the main study, participants were scored based on the accuracy and number of errors shown. The results indicate similar trends of lexical semantic deficits identified in the literature confirming ‘animals’ to be the easiest category to comprehend. Mann-Whitney U test was performed to determine the association between the selected variables and the participants’ performance on AC task. No statistical significance was found between the errors and the type of aphasia reflecting similar patterns described in aphasia literature in other languages. The current study indicates the presence of selectivity of lexical semantic deficits in AC and a hierarchy was developed based on the complexity of the categories to comprehend by Sinhala speaking PWA, which might be clinically beneficial when improving language skills of Sinhala speaking persons with post-stroke aphasia. However, further studies on aphasia should be conducted with larger samples for a longer period to study deficits in Sinhala and other Sri Lankan languages (Tamil and Malay).Keywords: aphasia, auditory comprehension, selective lexical-semantic deficits, semantic categories
Procedia PDF Downloads 252799 Need for E-Learning: An Effective Method in Educating the Persons with Hearing Impairment Using Sign Language
Authors: S. Vijayakumar, S. B. Rathna Kumar, Navnath D Jagadale
Abstract:
Learning and teaching are the challenges ahead in the education of the students with hearing impairment using sign language (SHISL). Either the students or teachers face difficulties in the process of learning/teaching. Communication is one of the main barriers while teaching SHISL. Further, the courses of study or the subjects are limited to SHISL at least in countries like India. Students with hearing impairment mainly opt for sign language as a communication mode. Subjects like physics, chemistry, advanced mathematics etc. are not available in the curriculum for the SHISL since their content and ideas are complex. In India, exemption for language papers is being given for the students with hearing impairment. It may give opportunity to them to secure secondary/ higher secondary qualifications. It is a known fact that students with hearing impairment are facing difficulty in their future carrier. They secure neither a higher study nor a good employment opportunity. Vocational training in various trades will land them in few jobs with few bucks in pocket. However, not all of them are blessed with higher positions in government or private sectors in competitive fields or where the technical knowledge is required. E learning with sign language instructions can be used for teaching languages and science subjects. Computer Based Instruction (CBI), Computer Based Training (CBT), and Computer Assisted Instruction (CAI) are now part-and-parcel of Modern Education. It will also include signed video clip corresponding to the topic. Learning language subjects will improve the understanding of concepts in different subjects. Learning other science subjects like their hearing counterparts will enable the SHISL to go higher in studies and increase their height to pluck a fruit of the tree of employment.Keywords: students with hearing impairment using sign language, hearing impairment, language subjects, science subjects, e-learning
Procedia PDF Downloads 404