Search results for: roof structures
4338 A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid
Authors: Francesca Maria Melucci, Marco Panettieri, Rocco Roma
Abstract:
Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives.Keywords: urban agriculture, green roof, urban sustainability, indicators, multi-criteria analysis
Procedia PDF Downloads 724337 Urban Roof Farming: A Smart City Solution Leading to Sustainability
Authors: Phibankhamti Ryngnga
Abstract:
It is a common phenomenon worldwide that farmland has been gradually converted for urban development particularly in the 21st century keeping in mind the population increase on the other hand. Since food demand and supply are not in equilibrium in urban set up, therefore, there is a need for alternative to feed the hungry urban settlers worldwide. In this regard, urban rooftop farming is the only way out to meet the growing demand for food production with the extra benefits of making our urban areas and cities greener and when the populace is exposed to nature and vegetation, it in turn provides an array of psychological benefits, from decreased anxiety to increased productivity. Bare roofs in cities absorb and then radiate heat — a phenomenon known as the “heat island effect. This increases energy usage and contributes to the poor air quality that often plagues big cities. But Urban rooftop farming do provide many solutions to help cool buildings, ultimately reducing carbon emissions, and by growing food in the communities they serve, rooftop farmers lessen the environmental impact of food transportation. This paper will emphasise the significance of Urban roof farming in the present century which in itself a multi-solution to various city problems.Keywords: urban, roof farming, smart solution, sustainability
Procedia PDF Downloads 1404336 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks
Authors: Amir Alirezaei, Shahram Vahdani
Abstract:
This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.Keywords: deformation demand, drift, setback, tall building
Procedia PDF Downloads 4244335 The Performance of Natural Light by Roof Systems in Cultural Buildings
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting
Procedia PDF Downloads 2124334 Effects of Coastal Structure Construction on Ecosystem
Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser
Abstract:
Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures
Procedia PDF Downloads 4874333 Federal College of Education Kano
Authors: Mahnaz Babaei Morad, Mojtaba Zargarzadeh, Behnaz Babaei Morad, Najmeh Salari Nasab
Abstract:
Green roofs and walls are one of the key elements of sustainable design in ecology design of cities. Lack of open space and urban green at different scales from one neighborhood to district is as subject that has become challenge for urban management Use change from green space to other use is familiar for Iranian citizens. The high price of land in this area, it seems only justified reason for municipalities that reduce the green space per capita. In this paper, examines the rooftops of Iranian city as a fifth facade, as well as the opportunity to offset some of the capital's urban spaces that has been removed. Today green roof isn't a matter of taste in the world. Be proportional to the quantity and quality of the architecture become the first concern of urban professionals and ecological approaches such as "sustainable" and "green architecture" is checked. In this paper we review and present examples of green roofs have been executed in Iran over the past decade. Survey some of the urban management policies in leading province in this article constitutes the second dimension. The purpose of this paper is study example of green roof performance in different parts of Iran, along with criteria for sustainable urban development and achieves the policies and components collection of implementation sustainable development , specific of Iranian green roof and monitor the develops ways to it.Keywords: sustainable development, green roofs, Iran, green architecture
Procedia PDF Downloads 4954332 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry
Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones
Abstract:
Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.Keywords: acoustic, digital holographic interferometry, isolation, recycled, roof tiles, sustainable, thermal
Procedia PDF Downloads 4654331 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec
Authors: Nairy Kechichian
Abstract:
The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.Keywords: covered bridge, wood-steel, short span, town Québécois structure
Procedia PDF Downloads 674330 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom
Authors: Tugba Gurler, Irfan Kurtbas
Abstract:
Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.Keywords: phase change material, regional energy demand, roof layers, thermal energy storage
Procedia PDF Downloads 1034329 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study
Authors: Rosalie Menon, Angela Reid
Abstract:
Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation
Procedia PDF Downloads 1724328 Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure
Authors: Toral Khalpada, Kanhai Joshi
Abstract:
Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure.Keywords: construction, determinate structure, indeterminate structure, stress
Procedia PDF Downloads 2324327 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: deterioration, functional condition, reinforced cement concrete, resources
Procedia PDF Downloads 2534326 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress
Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher
Abstract:
Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.Keywords: green roof, plant cover, plant drought stress, rainfall retention
Procedia PDF Downloads 1164325 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow
Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin
Abstract:
Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis
Procedia PDF Downloads 3904324 Design and Optimization of Composite Canopy Structure
Authors: Prakash Kattire, Rahul Pathare, Nilesh Tawde
Abstract:
A canopy is an overhead roof structure generally used at the entrance of a building to provide shelter from rain and sun and may also be used for decorative purposes. In this paper, the canopy structure to cover the conveyor line has been studied. Existing most of the canopy structures are made of steel and glass, which makes a heavier structure, so the purpose of this study is to weight and cost optimization of the canopy. To achieve this goal, the materials of construction considered are Polyvinyl chloride (PVC) natural composite, Fiber Reinforced Plastic (FRP), and Structural steel Fe250. Designing and modeling were done in Solid works, whereas Altair Inspire software was used for the optimization of the structure. Through this study, it was found that there is a total 10% weight reduction in the structure with sufficient reserve for structural strength.Keywords: canopy, composite, FRP, PVC
Procedia PDF Downloads 1484323 Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls
Authors: Eman M. Elmazek
Abstract:
Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production.Keywords: green roof, green walls, urban farming, roof herb garden
Procedia PDF Downloads 5334322 Multiscale Structures and Their Evolution in a Screen Cylinder Wake
Authors: Azlin Mohd Azmi, Tongming Zhou, Akira Rinoshika, Liang Cheng
Abstract:
The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream.Keywords: turbulent structure, screen cylinder, vortex, wavelet multi-resolution analysis
Procedia PDF Downloads 4604321 Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan
Authors: Zakiullah Kalwar, Shabeer Abbassi
Abstract:
This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned.Keywords: hydrocarbon potential, structural style, reserve calculation, enhance production
Procedia PDF Downloads 4294320 Health Monitoring of Concrete Assets in Refinery
Authors: Girish M. Bhatia
Abstract:
Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.Keywords: concrete structures, corrosion sensors, drones, health monitoring
Procedia PDF Downloads 3984319 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra
Authors: Amin Asgarian, Ghyslaine McClure
Abstract:
Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design
Procedia PDF Downloads 2384318 Design and Thermal Analysis of a Concrete House in Libya Using BEopt
Authors: Gamal Alamri, Tariq Iqbal
Abstract:
This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.Keywords: concrete house design, thermal analysis, hot climate, BEopt software
Procedia PDF Downloads 4124317 Evaluating Alternative Structures for Prefix Trees
Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha
Abstract:
Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.Keywords: data structures, indexing, tree structure, trie, information retrieval
Procedia PDF Downloads 4524316 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles
Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad
Abstract:
Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness
Procedia PDF Downloads 2404315 How Vernacular Attributes of Traditional Buildings Can Be Integrated Into Modern Designs - A Case Study of Thirumayilai, Mylapore
Authors: Divya Ramaseshan
Abstract:
The indigenous beauty of a space supported by its local context is unmatchable. India, known to be a hub for varied cultural significance, has one of the best uses of vernacularism. This paper focuses on the traditional houses present in Thirumayilai, Mylapore, one of the oldest and most populous cities in Chennai. The Mylapore houses are known for their Agraharam style with thinnai, courtyard, and sloping roof characteristics. These homes had a combined influence of Indian, Islamic as well as Neo-classical architecture in their design. The design of the houses reflects the lives of Brahmin communities which have almost vanished from sight now. According to the growing demands of local residents as well as urbanization, many houses have been renovated. Some of those structures have been conserved in certain streets showcasing their historical identity. Other structures have either been demolished or redesigned based on people’s needs. Those structures have been identified and studied to understand the comparative features that have been changed. Many of those were in direct relevance to the city’s climate, family size, socializing habits, and local materials. Being a temple town, Mylapore has contour variations sloping towards various water bodies. These factors have been considered for building homes as well. The study aims to list down the possible design guidelines that could be effective in today’s construction field. The pros and cons are analyzed, and the respective methodologies are framed. Our modern construction technologies have brought in the best visual aesthetics in a short frame of time, but the serene touch of teak wood, walking through paved stones, daydreaming in the sunlit courtyards, and chitchatting in porticos are always cherished. Architects around the world are trying hard to achieve such appreciated design elements in upcoming projects with the best use of modern technology. This will also improvise people’s mental health in the comfort of their homes.Keywords: Agraharam, Mylapore, traditional, vernacularism
Procedia PDF Downloads 1044314 Earth Flat Roofs
Authors: Raúl García de la Cruz
Abstract:
In the state of Hidalgo and to the vicinity to the state of Mexico, there is a network of people who also share a valley bordered by hills with agave landscape of cacti and shared a bond of building traditions inherited from pre-Hispanic times and according to their material resources, habits and needs have been adapted in time. Weather has played an important role in the way buildings and roofs are constructed. Throughout the centuries, the population has developed very sophisticated building techniques like the flat roof, made out of a layer of earth; that is usually identified as belonging to architecture of the desert, but it can also be found in other climates, such as semi-arid and even template climates. It is an example of a constructive logic applied efficiently to various cultures proving its thermal isolation. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture , finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment. The objective of the research is the documentation of existing earth flat roofs in the state of Hidalgo and Mexico, as evidence of the importance of constructive system and its historical value in the area, considering its environmental, social aspects, also understanding the process of transformation of public housing at the time replaced the traditional techniques for industrial materials on a path towards urbanization. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture, finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment.Keywords: earth roof, low impact building system, sustainable architecture, vernacular architecture
Procedia PDF Downloads 4584313 Preparation Non-Woven Nanofiber Structures for Uniform and Rapid Drug Releasing Applications Using an Electrospinning Process
Authors: Cho-Liang Chung
Abstract:
Uniform and rapid drug release are important for trauma dressing application. Low glass transition polymer system and non-woven nanofiber structures as the designs conduct rapid-release characteristics. In this study, polyvinylpyrrolidone, polysulfone, and polystyrene were dissolved in dimethylformamide to form precursor solution. These solutions were blended with vitamin C to form the electrospinning solutions. The non-woven nanofibers structures were successfully prepared using an electrospinning process. The following instruments were used to analyze the characteristics of non-woven nanofibers structures: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The AFM was used to scan the nanofibers. 3D Graphics were applied to explore the surface morphology of nanofibers. FE-SEM was used to explore the morphology of non-woven structures. XRD was used to identify crystal structures in the non-woven structures. The evolution of morphology of non-woven structures was changed dramatically in different durations, because of the moisture absorption and decreasing glass transition temperature; the non-woven nanofiber structures can be applied to uniform and rapid drug release for trauma dressing application.Keywords: nanofibers, non-woven, electrospinning process, rapid drug releasing
Procedia PDF Downloads 1404312 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics
Authors: Pratik Pankaj Pawar
Abstract:
Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate
Procedia PDF Downloads 604311 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling
Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad
Abstract:
One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis
Procedia PDF Downloads 4144310 On the Creep of Concrete Structures
Authors: A. Brahma
Abstract:
Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.Keywords: concrete structure, creep, modelling, prediction
Procedia PDF Downloads 2914309 Re-Analyzing Energy-Conscious Design
Authors: Svetlana Pushkar, Oleg Verbitsky
Abstract:
An energy-conscious design for a classroom in a hot-humid climate is reanalyzed. The hypothesis of this study is that use of photovoltaic (PV) electricity generation in building operation energy consumption will lead to re-analysis of the energy-conscious design. Therefore, the objective of this study is to reanalyze the energy-conscious design by evaluating the environmental impact of operational energy with PV electrical generation. Using the hierarchical design structure of Eco-indicator 99, the alternatives for energy-conscious variables are statistically evaluated by applying a two-stage nested (hierarchical) ANOVA. The recommendations for the preferred solutions for application of glazing types, wall insulation, roof insulation, window size, roof mass, and window shading design alternatives were changed (for example, glazing type recommendations were changed from low-emissivity glazing, green, and double- glazed windows to low-emissivity glazing only), whereas the applications for the lighting control system and infiltration are not changed. Such analysis of operational energy can be defined as environment-conscious analysis.Keywords: ANOVA, Eco-Indicator 99, energy-conscious design, hot–humid climate, photovoltaic
Procedia PDF Downloads 189