Search results for: real estate price prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8225

Search results for: real estate price prediction

8165 Imbalance on the Croatian Housing Market in the Aftermath of an Economic Crisis

Authors: Tamara Slišković, Tomislav Sekur

Abstract:

This manuscript examines factors that affect demand and supply of the housing market in Croatia. The period from the beginning of this century, until 2008, was characterized by a strong expansion of construction, housing and real estate market in general. Demand for residential units was expanding, and this was supported by favorable lending conditions of banks. Indicators on the supply side, such as the number of newly built houses and the construction volume index were also increasing. Rapid growth of demand, along with the somewhat slower supply growth, led to the situation in which new apartments were sold before the completion of residential buildings. This resulted in a rise of housing price which was indication of a clear link between the housing prices with the supply and demand in the housing market. However, after 2008 general economic conditions in Croatia worsened and demand for housing has fallen dramatically, while supply descended at much slower pace. Given that there is a gap between supply and demand, it can be concluded that the housing market in Croatia is in imbalance. Such trend is accompanied by a relatively small decrease in housing price. The final result of such movements is the large number of unsold housing units at relatively high price levels. For this reason, it can be argued that housing prices are sticky and that, consequently, the price level in the aftermath of a crisis does not correspond to the discrepancy between supply and demand on the Croatian housing market. The degree of rigidity of the housing price can be determined by inclusion of the housing price as the explanatory variable in the housing demand function. Other independent variables are demographic variable (e.g. the number of households), the interest rate on housing loans, households' disposable income and rent. The equilibrium price is reached when the demand for housing equals its supply, and the speed of adjustment of actual prices to equilibrium prices reveals the extent to which the prices are rigid. The latter requires inclusion of the housing prices with time lag as an independent variable in estimating demand function. We also observe the supply side of the housing market, in order to explain to what extent housing prices explain the movement of new construction activity, and other variables that describe the supply. In this context, we test whether new construction on the Croatian market is dependent on current prices or prices with a time lag. Number of dwellings is used to approximate new construction (flow variable), while the housing prices (current or lagged), quantity of dwellings in the previous period (stock variable) and a series of costs related to new construction are independent variables. We conclude that the key reason for the imbalance in the Croatian housing market should be sought in the relative relationship of price elasticities of supply and demand.

Keywords: Croatian housing market, economic crisis, housing prices, supply imbalance, demand imbalance

Procedia PDF Downloads 272
8164 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
8163 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
8162 General Framework for Price Regulation of Container Terminals

Authors: Murat Yildiz, Burcu Yildiz

Abstract:

Price Cap Regulation is a form of economic regulation designed in the 1980s in the United Kingdom. Price cap regulation sets a cap on the price that the utility provider can charge. The cap is set according to several economic factors, such as the price cap index, expected efficiency savings and inflation. It has been used by several countries as a regulatory regime in several sectors. Container port privatization is still in early stages in some countries. Lack of a general framework can be an impediment to privatization. This paper aims a general framework to comprising decisions to be made for variables which are able to accommodate the variety of container terminals. Several approaches that may be needed as well as a passage between approaches.

Keywords: Price Cap Regulation, ports privatization, container terminal price regime, earning sharing

Procedia PDF Downloads 359
8161 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application

Authors: Miroslav Čulík, Petr Gurný

Abstract:

This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.

Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility

Procedia PDF Downloads 548
8160 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro

Abstract:

The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.

Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series

Procedia PDF Downloads 244
8159 The Influence of Oil Price Fluctuations on Macroeconomics Variables of the Kingdom of Saudi Arabia

Authors: Khalid Mujaljal, Hassan Alhajhoj

Abstract:

This paper empirically investigates the influence of oil price fluctuations on the key macroeconomic variables of the Kingdom of Saudi Arabia using unrestricted VAR methodology. Two analytical tools- Granger-causality and variance decomposition are used. The Granger-causality test reveals that almost all specifications of oil price shocks significantly Granger-cause GDP and demonstrates evidence of causality between oil price changes and money supply (M3) and consumer price index percent (CPIPC) in the case of positive oil price shocks. Surprisingly, almost all specifications of oil price shocks do not Granger-cause government expenditure. The outcomes from variance decomposition analysis suggest that positive oil shocks contribute about 25 percent in causing inflation in the country. Also, contribution of symmetric linear oil price shocks and asymmetric positive oil price shocks is significant and persistent with 25 percent explaining variation in world consumer price index till end of the period.

Keywords: Granger causality, oil prices changes, Saudi Arabian economy, variance decomposition

Procedia PDF Downloads 322
8158 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 419
8157 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 316
8156 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120
8155 Development of Integrated Solid Waste Management Plan for Industrial Estates of Pakistan

Authors: Mehak Masood

Abstract:

This paper aims to design an integrated solid waste management plan for industrial estates taking Sundar Industrial Estate as case model. The issue of solid waste management is on the rise in Pakistan especially in the industrial sector. In this regard, the concept of development and establishment of industrial estates is gaining popularity nowadays. Without proper solid waste management plan it is very difficult to manage day to day affairs of industrial estates. An industrial estate contains clusters of different types of industrial units. It is necessary to identify different types of solid waste streams from each industrial cluster within the estate. In this study, Sundar Industrial Estate was taken as a case model. Primary and secondary data collection, waste assessment, waste segregation and weighing and field surveys were essential elements of the study. Wastes from each industrial process were identified and quantified. Currently 130 industries are in production but after full colonization of industries this number would reach 385. Elaborated process flow diagrams were made to characterize the recyclable and non-recyclables waste. From the study it was calculated that about 12354.1 kg/captia/day of solid waste is being generated in Sundar Industrial Estate. After the full colonization of the industrial estate, the estimated quantity will be 4756328.5 kg/captia/day. Furthermore, solid waste generated from each industrial sector was estimated. Suggestions for collection and transportation are given. Environment friendly solid waste management practices are suggested. If an effective integrated waste management system is developed and implemented it will conserve resources, create jobs, reduce poverty, conserve natural resources, protect the environment, save collection, transportation and disposal costs and extend the life of disposal sites. A major outcome of this study is an integrated solid waste management plan for the Sundar Industrial Estate which requires immediate implementation.

Keywords: integrated solid waste management plan, industrial estates, Sundar Industrial Estate, Pakistan

Procedia PDF Downloads 490
8154 Price Regulation in Domestic Market: Incentives to Collude in the Deregulated Market

Authors: S. Avdasheva, D. Tsytsulina

Abstract:

In many regulated industries over the world price cap as a method of price regulation replaces cost-plus pricing. It is a kind of incentive regulation introduced in order to enhance productive efficiency by strengthening sellers’ incentives for cost reduction as well as incentives for more efficient pricing. However pricing under cap is not neutral for competition in the market. We consider influence on competition on the markets where benchmark for cap is chosen from when sellers are multi-market. We argue that the impact of price cap regulation on market competition depends on the design of cap. More specifically if cap for one (regulated) market depends on the price of the supplier in other (non-regulated) market, there is sub-type of price cap regulation (known in Russian tariff regulation as ‘netback minus’) that enhance incentives to collude in non-regulated market.

Keywords: price regulation, competition, collusion

Procedia PDF Downloads 521
8153 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 127
8152 Price Compensation Mechanism with Unmet Demand for Public-Private Partnership Projects

Authors: Zhuo Feng, Ying Gao

Abstract:

Public-private partnership (PPP), as an innovative way to provide infrastructures by the private sector, is being widely used throughout the world. Compared with the traditional mode, PPP emerges largely for merits of relieving public budget constraint and improving infrastructure supply efficiency by involving private funds. However, PPP projects are characterized by large scale, high investment, long payback period, and long concession period. These characteristics make PPP projects full of risks. One of the most important risks faced by the private sector is demand risk because many factors affect the real demand. If the real demand is far lower than the forecasting demand, the private sector will be got into big trouble because operating revenue is the main means for the private sector to recoup the investment and obtain profit. Therefore, it is important to study how the government compensates the private sector when the demand risk occurs in order to achieve Pareto-improvement. This research focuses on price compensation mechanism, an ex-post compensation mechanism, and analyzes, by mathematical modeling, the impact of price compensation mechanism on payoff of the private sector and consumer surplus for PPP toll road projects. This research first investigates whether or not price compensation mechanisms can obtain Pareto-improvement and, if so, then explores boundary conditions for this mechanism. The research results show that price compensation mechanism can realize Pareto-improvement under certain conditions. Especially, to make the price compensation mechanism accomplish Pareto-improvement, renegotiation costs of the government and the private sector should be lower than a certain threshold which is determined by marginal operating cost and distortionary cost of the tax. In addition, the compensation percentage should match with the price cut of the private investor when demand drops. This research aims to provide theoretical support for the government when determining compensation scope under the price compensation mechanism. Moreover, some policy implications can also be drawn from the analysis for better risk-sharing and sustainability of PPP projects.

Keywords: infrastructure, price compensation mechanism, public-private partnership, renegotiation

Procedia PDF Downloads 179
8151 Monetary Policy and Assets Prices in Nigeria: Testing for the Direction of Relationship

Authors: Jameelah Omolara Yaqub

Abstract:

One of the main reasons for the existence of central bank is that it is believed that central banks have some influence on private sector decisions which will enable the Central Bank to achieve some of its objectives especially that of stable price and economic growth. By the assumption of the New Keynesian theory that prices are fully flexible in the short run, the central bank can temporarily influence real interest rate and, therefore, have an effect on real output in addition to nominal prices. There is, therefore, the need for the Central Bank to monitor, respond to, and influence private sector decisions appropriately. This thus shows that the Central Bank and the private sector will both affect and be affected by each other implying considerable interdependence between the sectors. The interdependence may be simultaneous or not depending on the level of information, readily available and how sensitive prices are to agents’ expectations about the future. The aim of this paper is, therefore, to determine whether the interdependence between asset prices and monetary policy are simultaneous or not and how important is this relationship. Studies on the effects of monetary policy have largely used VAR models to identify the interdependence but most have found small effects of interaction. Some earlier studies have ignored the possibility of simultaneous interdependence while those that have allowed for simultaneous interdependence used data from developed economies only. This study, therefore, extends the literature by using data from a developing economy where information might not be readily available to influence agents’ expectation. In this study, the direction of relationship among variables of interest will be tested by carrying out the Granger causality test. Thereafter, the interaction between asset prices and monetary policy in Nigeria will be tested. Asset prices will be represented by the NSE index as well as real estate prices while monetary policy will be represented by money supply and the MPR respectively. The VAR model will be used to analyse the relationship between the variables in order to take account of potential simultaneity of interdependence. The study will cover the period between 1980 and 2014 due to data availability. It is believed that the outcome of the research will guide monetary policymakers especially the CBN to effectively influence the private sector decisions and thereby achieve its objectives of price stability and economic growth.

Keywords: asset prices, granger causality, monetary policy rate, Nigeria

Procedia PDF Downloads 220
8150 Grand Paris Residential Real Estate as an Effective Hedge against Inflation

Authors: Yasmine Essafi Zouari, Aya Nasreddine

Abstract:

Following a long inflationary period from the post-war era to the mid-1980s (+10.1% annually), France went through a moderate inflation period between 1986 and 2001 (+2.1% annually) and even lower inflation between 2002 and 2016 (+1.4% annually). In 2022, inflation in France increased rapidly and reached 4.5% over one year in March, according to INSEE estimates. Over a long period, even low inflation has an impact on portfolio value and households’ purchasing power. In such a context, inflation hedging should remain an important issue for investors. In particular, long-term investors, who are concerned with the protection of their wealth, seek to hold effective hedging assets. Considering a mixed-asset portfolio composed of housing assets (residential real estate in 150 Grand Paris communes) as well as financial assets, and using both correlation and regression analysis, results confirm the attribute of the direct housing investment as an inflation hedge especially particularly against its unexpected component. Further, cash and bonds were found to provide respectively a partial and an over hedge against unexpected inflation. Stocks act as a perverse hedge against unexpected inflation and provide no significant positive hedge against expected inflation.

Keywords: direct housing, inflation, hedging ability, optimal portfolio, Grand Paris metropolis

Procedia PDF Downloads 113
8149 Foreign Real Estate Investment and the Australian Residential Property Market: A Study on Chinese Investors

Authors: Peng Yew Wong

Abstract:

House prices in the Australian capital cities were at record levels subsequent to Global Financial Crisis (GFC) 2008 and many believed that foreign investors, especially the Chinese investors, were the main reason for the Australian capital cities’ house prices escalation. This research conducted an Australian cross border semi-structured interviews in Shanghai, China to uncover historical evidence and emerging trend supporting the existence of a significant relationship between overseas investors and residential housing markets performance in Australia subsequent to the GFC 2008. Some unique investment strategies of private investors from China which emphasised on non-capitalist factors such as early education were identified, alongside with some insights on the significant China government policies that have incentivised the cross border investments from China. It is believed that this understanding will assist policy makers to effectively manage the overheated Australian residential property market without compromising the steady flow of FREI.

Keywords: Australian housing market, residential property, foreign real estate investment, education, China investor

Procedia PDF Downloads 292
8148 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 447
8147 Estimating Housing Prices Using Automatic Linear Modeling in the Metropolis of Mashhad, Iran

Authors: Mohammad Rahim Rahnama

Abstract:

Market-transaction price for housing is the main criteria for determining municipality taxes and is determined and announced on an annual basis. Of course, there is a discrepancy between the actual value of transactions in the Bureau of Finance (P for short) or municipality (P´ for short) and the real price on the market (P˝). The present research aims to determine the real price of housing in the metropolis of Mashhad and to pinpoint the price gap with those of the aforementioned apparatuses and identify the factors affecting it. In order to reach this practical objective, Automatic Linear Modeling, which calls for an explanatory research, was utilized. The population of the research consisted of all the residential units in Mashhad, from which 317 residential units were randomly selected. Through cluster sampling, out of the 170 income blocks defined by the municipality, three blocks form high-income (Kosar), middle-income (Elahieh), and low-income (Seyyedi) strata were surveyed using questionnaires during February and March of 2015 and the information regarding the price and specifications of residential units were gathered. In order to estimate the effect of various factors on the price, the relationship between independent variables (8 variables) and the dependent variable of the housing price was calculated using Automatic Linear Modeling in SPSS. The results revealed that the average for housing price index is 788$ per square meter, compared to the Bureau of Finance’s prices which is 10$ and that of municipality’s which is 378$. Correlation coefficient among dependent and independent variables was calculated to be R²=0.81. Out of the eight initial variables, three were omitted. The most influential factor affecting the housing prices is the quality of Quality of construction (Ordinary, Full, Luxury). The least important factor influencing the housing prices is the variable of number of sides. The price gap between low-income (Seyyedi) and middle-income (Elahieh) districts was not confirmed via One-Way ANOVA but their gap with the high-income district (Kosar) was confirmed. It is suggested that city be divided into two low-income and high-income sections, as opposed three, in terms of housing prices.

Keywords: automatic linear modeling, housing prices, Mashhad, Iran

Procedia PDF Downloads 255
8146 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model

Authors: Zichun Guo

Abstract:

Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.

Keywords: POI, house price, spatial heterogeneity, Guangzhou

Procedia PDF Downloads 55
8145 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model

Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma

Abstract:

An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.

Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations

Procedia PDF Downloads 145
8144 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
8143 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 165
8142 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: space syntax, urban regeneration, spatial structure, official land price

Procedia PDF Downloads 328
8141 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio

Authors: Lindrianasari Stefanie, Aminah Khairudin

Abstract:

This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.

Keywords: price to earnings growth, price to earnings ratio, future returns, stock price

Procedia PDF Downloads 412
8140 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression

Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin

Abstract:

This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.

Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression

Procedia PDF Downloads 290
8139 Sentiment Analysis of Social Media on the Cryptocurrency Price

Authors: Tarek Sadraoui, Ahlem Nasr Othman

Abstract:

Our research deal with studying and testing the effects of social media on the cryptocurrency price during the period 2020-2023. The rise of the phenomena of cryptocurrency in the world raises questions about the importance of sentiment analysis of social media on the price of the cryptocurrency. Using panel data, we show that the positive and negative twits have a positive and statistically significant impact on the price of the cryptocurrency, and neutral twits have exerted a negative and significant effect on the cryptocurrency price. Specifically, we determine the causal relationship, short-term and long-term relationship with ARDL approach between the cryptocurrency price and social media using the Granger causality test.

Keywords: social media, Twitter, Google trend, panel, cryptocurrency

Procedia PDF Downloads 115
8138 Analysis of Consumer Preferences for Housing in Saudi Arabia

Authors: Mohammad Abdulaziz Algrnas, Emma Mulliner

Abstract:

Housing projects have been established in Saudi Arabia, by both government and private construction companies, to meet the increasing demand from Saudi inhabitants across the country. However, the real estate market supply does not meet consumer preference requirements. Preferences normally differ depending on the consumer’s situation, such as the household’s sociological characteristics (age, household size and composition), resources (income, wealth, information and experience), tastes and priorities. Collecting information about consumer attitudes, preferences and perceptions is important for the real estate market in order to better understand housing demand and to ensure that this is met by appropriate supply. The aim of this paper is to identify consumer preferences for housing in Saudi Arabia. A quantitative closed-ended questionnaire was conducted with housing consumers in Saudi Arabia in order to gain insight into consumer needs, current household situation, preferences for a number of investigated housing attributes and consumers’ perceptions around the current housing problem. 752 survey responses were obtained and analysed in order to describe preferences for housing attributes and make comparisons between groups. Factor analysis was also conducted to identify and reduce the attributes. The results indicate a difference in preference according to the gender of the respondents and depending on their region of residence.

Keywords: housing attributes, Saudi Arabia, consumer preferences, housing preferences

Procedia PDF Downloads 540
8137 The Impact of Macroeconomic Factors on Tehran Stock Exchange Index during Economic and Oil Sanctions between January 2006 and December 2012

Authors: Hamed Movahedizadeh, Annuar Md Nassir, Mehdi Karimimalayer, Navid Samimi Sedeh, Ehsan Bagherpour

Abstract:

The aim of this paper is to evaluate Tehran’s Stock Exchange (TSE) performance regarding with impact of four macroeconomic factors including world crude Oil Price (OP), World Gold Price (GP), Consumer Price Index (CPI) and total Supplied Oil by Iran (SO) from January 2006 to December 2012 that Iran faced with economic and oil sanctions. Iran's exports of crude oil and lease condensate reduced to roughly 1.5 million barrels per day (bbl/d) in 2012, compared to 2.5 million bbl/d in 2011 due to hard sanctions. Monthly data are collected and subjected to a battery of tests through ordinary least square by EViews7. This study found that gold price and oil price are positively correlated with stock returns while total oil supplied and consumer price index have negative relationship with stock index, however, consumer price index tends to become insignificant in stock index. While gold price and consumer price index have short run relationship with TSE index at 10% of significance level this amount for oil price is significant at 5% and there is no significant short run relationship between supplied oil and Tehran stock returns. Moreover, this study found that all macroeconomic factors have long-run relationship with Tehran Stock Exchange Index.

Keywords: consumer price index, gold price, macroeconomic, oil price, sanction, stock market, supplied oil

Procedia PDF Downloads 489
8136 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 74