Search results for: partial feedback linearization
2521 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English
Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot
Abstract:
This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances
Procedia PDF Downloads 1492520 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner
Authors: Sewon Kim, Changyeop Lee
Abstract:
A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.Keywords: burner, low NOx, liquid fuel, partial oxidation
Procedia PDF Downloads 3422519 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip
Authors: Gilbert Makanda
Abstract:
The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.Keywords: free convection, suction/injection, partial slip, viscous dissipation
Procedia PDF Downloads 2492518 Establishing Feedback Partnerships in Higher Education: A Discussion of Conceptual Framework and Implementation Strategies
Authors: Jessica To
Abstract:
Feedback is one of the powerful levers for enhancing students’ performance. However, some students are under-engaged with feedback because they lack responsibility for feedback uptake. To resolve this conundrum, recent literature proposes feedback partnerships in which students and teachers share the power and responsibilities to co-construct feedback. During feedback co-construction, students express feedback needs to teachers, and teachers respond to individuals’ needs in return. Though this approach can increase students’ feedback ownership, its application is lagging as the field lacks conceptual clarity and implementation guide. This presentation aims to discuss the conceptual framework of feedback partnerships and feedback co-construction strategies. It identifies the components of feedback partnerships and strategies which could facilitate feedback co-construction. A systematic literature review was conducted to answer the questions. The literature search was performed using ERIC, PsycINFO, and Google Scholar with the keywords “assessment partnership”, “student as partner,” and “feedback engagement”. No time limit was set for the search. The inclusion criteria encompassed (i) student-teacher partnerships in feedback, (ii) feedback engagement in higher education, (iii) peer-reviewed publications, and (iv) English as the language of publication. Those without addressing conceptual understanding and implementation strategies were excluded. Finally, 65 publications were identified and analysed using thematic analysis. For the procedure, the texts relating to the questions were first extracted. Then, codes were assigned to summarise the ideas of the texts. Upon subsuming similar codes into themes, four themes emerged: students’ responsibilities, teachers’ responsibilities, conditions for partnerships development, and strategies. Their interrelationships were examined iteratively for framework development. Establishing feedback partnerships required different responsibilities of students and teachers during feedback co-construction. Students needed to self-evaluate performance against task criteria, identify inadequacies and communicate their needs to teachers. During feedback exchanges, they interpreted teachers’ comments, generated self-feedback through reflection, and co-developed improvement plans with teachers. Teachers had to increase students’ understanding of criteria and evaluation skills and create opportunities for students’ expression of feedback needs. In feedback dialogue, teachers responded to students’ needs and advised on the improvement plans. Feedback partnerships would be best grounded in an environment with trust and psychological safety. Four strategies could facilitate feedback co-construction. First, students’ understanding of task criteria could be increased by rubrics explanation and exemplar analysis. Second, students could sharpen evaluation skills if they participated in peer review and received teacher feedback on the quality of peer feedback. Third, provision of self-evaluation checklists and prompts and teacher modeling of self-assessment process could aid students in articulating feedback needs. Fourth, the trust could be fostered when teachers explained the benefits of feedback co-construction, showed empathy, and provided personalised comments in dialogue. Some strategies were applied in interactive cover sheets in which students performed self-evaluation and made feedback requests on a cover sheet during assignment submission, followed by teachers’ response to individuals’ requests. The significance of this presentation lies in unpacking the conceptual framework of feedback partnerships and outlining feedback co-construction strategies. With a solid foundation in theory and practice, researchers and teachers could better enhance students’ engagement with feedback.Keywords: conceptual framework, feedback co-construction, feedback partnerships, implementation strategies
Procedia PDF Downloads 912517 Investigation of Verbal Feedback and Learning Process for Oral Presentation
Authors: Nattawadee Sinpattanawong
Abstract:
Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.Keywords: business context, learning process, oral presentation, verbal feedback
Procedia PDF Downloads 1952516 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation
Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang
Abstract:
Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method
Procedia PDF Downloads 2122515 Design and Simulation of Variable Air Volume Air Conditioning System Based on Improved Sliding Mode Control
Authors: Abbas Anser, Ahmad Irfan
Abstract:
The main purpose of the VAV (Variable Air Volume) in Heating, Ventilation, and Air Conditioning (HVAC) system is to reduce energy consumption and make the buildings comfortable for the occupants. For better performance of the air conditioning system, different control techniques have been developed. In this paper, an Improved Sliding Mode Control (ISMC), based on Power Rate Exponential Reaching Law (PRERL), has been implemented on a VAV air conditioning system. Through the proposed technique, fast response and robustness have been achieved. To verify the efficacy of ISMC, a comparison of the suggested control technique has been made with Exponential Reaching Law (ERL) based SMC. And secondly, chattering, which is unfavorable as it deteriorates the mechanical parts of the air conditioning system by the continuous movement of the mechanical parts and consequently it increases the energy loss in the air conditioning system, has been alleviated. MATLAB/SIMULINK results show the effectiveness of the utilized scheme, which ensures the enhancement of the energy efficiency of the VAV air conditioning system.Keywords: PID, SMC, HVAC, PRERL, feedback linearization, VAV, chattering
Procedia PDF Downloads 1252514 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation
Authors: Kyoung Hoon Kim
Abstract:
A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance
Procedia PDF Downloads 3012513 Volumetric Properties of Binary Mixtures of Glycerol +1-Butanol or +2-Butanol at Several Temperatures
Authors: Y. Chabouni, F. Amireche
Abstract:
Densities of glycerol + 1-butanol or 2-butanol mixtures were measured over the temperature range 293.15 to 303.15 K at atmospheric pressure, over the entire composition range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial molar volumes of glycerol and butanol, thermal isobaric expansivities of the mixture and partial molar expansivities of the components were calculated. The excess molar volumes of the mixtures are negative at all temperatures, and deviations from ideality increase with increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation. Partial molar volumes of glycerol decrease with increasing butanol concentration.Keywords: 1-Butanol, 2-Butanol, density, excess molar volume, glycerol, partial molar property, thermal isobaric expansivities
Procedia PDF Downloads 1902512 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model
Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma
Abstract:
An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations
Procedia PDF Downloads 1482511 The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation
Authors: Sidi Mohamed Mesli, Mohamed Habchi, Arslane Boudghene Stambouli, Rafik Benallal
Abstract:
The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions.Keywords: fluoride glasses, RMC simulation, hybrid RMC simulation, Buckingham potential, partial pair distribution functions
Procedia PDF Downloads 5062510 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils
Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh
Abstract:
This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional
Procedia PDF Downloads 2162509 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation
Authors: Debabrata Das
Abstract:
This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation
Procedia PDF Downloads 3482508 Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback
Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield
Abstract:
Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.Keywords: mindset(s), failure, intelligence, parental feedback, parents
Procedia PDF Downloads 1412507 Stochastic Analysis of Linux Operating System through Copula Distribution
Authors: Vijay Vir Singh
Abstract:
This work is focused studying the Linux operating system connected in a LAN (local area network). The STAR topology (to be called subsystem-1) and BUS topology (to be called subsystem-2) are taken into account, which are placed at two different locations and connected to a server through a hub. In the both topologies BUS topology and STAR topology, we have assumed n clients. The system has two types of failures i.e. partial failure and complete failure. Further, the partial failure has been categorized as minor and major partial failure. It is assumed that the minor partial failure degrades the sub-systems and the major partial failure make the subsystem break down mode. The system may completely fail due to failure of server hacking and blocking etc. The system is studied using supplementary variable technique and Laplace transform by using different types of failure and two types of repair. The various measures of reliability for example, availability of system, reliability of system, MTTF, profit function for different parametric values have been discussed.Keywords: star topology, bus topology, blocking, hacking, Linux operating system, Gumbel-Hougaard family copula, supplementary variable
Procedia PDF Downloads 3702506 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement
Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas
Abstract:
The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor
Procedia PDF Downloads 912505 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 3222504 Robotic Assisted vs Traditional Laparoscopic Partial Nephrectomy Peri-Operative Outcomes: A Comparative Single Surgeon Study
Authors: Gerard Bray, Derek Mao, Arya Bahadori, Sachinka Ranasinghe
Abstract:
The EAU currently recommends partial nephrectomy as the preferred management for localised cT1 renal tumours, irrespective of surgical approach. With the advent of robotic assisted partial nephrectomy, there is growing evidence that warm ischaemia time may be reduced compared to the traditional laparoscopic approach. There is still no clear differences between the two approaches with regards to other peri-operative and oncological outcomes. Current limitations in the field denote the lack of single surgeon series to compare the two approaches as other studies often include multiple operators of different experience levels. To the best of our knowledge, this study is the first single surgeon series comparing peri-operative outcomes of robotic assisted and laparoscopic PN. The current study aims to reduce intra-operator bias while maintaining an adequate sample size to assess the differences in outcomes between the two approaches. We retrospectively compared patient demographics, peri-operative outcomes, and renal function derangements of all partial nephrectomies undertaken by a single surgeon with experience in both laparoscopic and robotic surgery. Warm ischaemia time, length of stay, and acute renal function deterioration were all significantly reduced with robotic partial nephrectomy, compared to laparoscopic nephrectomy. This study highlights the benefits of robotic partial nephrectomy. Further prospective studies with larger sample sizes would be valuable additions to the current literature.Keywords: partial nephrectomy, robotic assisted partial nephrectomy, warm ischaemia time, peri-operative outcomes
Procedia PDF Downloads 1412503 Student Feedback and Its Impact on Fostering the Quality of Teaching at the Academia
Authors: S. Vanker, A. Aaver, A. Roio, L. Nuut
Abstract:
To be sure about the effective and less effective/ineffective approaches to course instruction, we hold the opinion that the faculty members need regular feedback from their students in order to be aware of how well or unwell their teaching styles have worked when instructing the courses. It can be confirmed without a slightest hesitation that undergraduate students’ motivated-ness can be sustained when continually improving the quality of teaching and properly sequencing the academic courses both, in the curricula and timetables. At Estonian Aviation Academy, four different forms of feedback are used: Lecture monitoring, questionnaires for all students, study information system subject monitoring and direct feedback received by the lecturer. Questionnaires for all students are arranged once during a study year and separately for the first year and senior students. The results are discussed in academic departments together with student representatives, analyzed with the teaching staff and, if needed, improvements are suggested. In addition, a monitoring system is planned where a lecturer acts in both roles – as an observer and as the lecturer. This will foster better exchange of experience and through this help to make the whole study process more interesting.Keywords: learner motivation, feedback, student support, undergraduate education
Procedia PDF Downloads 3202502 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer
Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil
Abstract:
The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.Keywords: convection, instability, magnetic field, nanofluid, power-law
Procedia PDF Downloads 2692501 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor
Authors: K. Senthil Kumar, A. Vasumalaikannan
Abstract:
In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.Keywords: teleoperation, quadrotor, neural smith predictor, time delay
Procedia PDF Downloads 6162500 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties
Authors: Tomas Menard
Abstract:
The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.Keywords: dynamical systems, output feedback control law, sampling, uncertain systems
Procedia PDF Downloads 2862499 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm
Procedia PDF Downloads 1322498 Real-Time Fitness Monitoring with MediaPipe
Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola
Abstract:
In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback
Procedia PDF Downloads 672497 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 792496 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback
Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim
Abstract:
A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.Keywords: model mismatch, repetitive control, singular values, state feedback
Procedia PDF Downloads 1562495 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 3372494 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 4462493 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects
Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti
Abstract:
This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects
Procedia PDF Downloads 2142492 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques
Authors: Bum-Soo Kim, Jin-Uk Kim
Abstract:
In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.Keywords: boundary image matching, indexing, partial denoising, time-series matching
Procedia PDF Downloads 141