Search results for: mining landscapes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1331

Search results for: mining landscapes

1271 Climate Change, Multiple Stressors, and Livelihoods: A Search for Communities Understanding, Vulnerability, and Adaptation in Zanzibar Islands

Authors: Thani R. Said

Abstract:

There is a wide concern on the academic literatures that the world is on course to experience “severe and pervasive” negative impacts from climate change unless it takes rapid action to slash its greenhouse gas emissions. The big threat however, is more belligerent in the third world countries, small islands states in particular. Most of the academic literatures claims that the livelihoods, economic and ecological landscapes of most of the coastal communities are into serious danger due to the peril of climate change. However, focusing the climate change alone and paying less intention to the surrounding stressors which sometimes are apparent then the climate change its self has now placed at the greater concern on academic debates. The recently studies have begun to question such narrowed assessment of climate change intervening programs from both its methodological and theoretical perspectives as related with livelihoods and the landscapes of the coastal communities. Looking climate as alone as an ostentatious threat doesn't yield the yield an appropriate mechanisms to address the problem in its totality and tend to provide the partially picture of the real problem striking the majority of the peoples living in the coastal areas of small islands states, Zanzibar in particular. By using the multiples human grounded knowledge approaches, the objective of this study is to go beyond the mere climate change by analyzing other multiples stressors that real challenging and treating the livelihoods, economic and ecological landscapes of the coastal communities through dialectic understanding, vulnerability and adaptive mechanisms at their own localities. To be more focus and to capture the full picture on this study special intention will be given to those areas were climate changes intervening programs have been onto place, the study will further compare and contrast between the two islands communities, Unguja and Pemba taking into account their respective diverse economic and geographical landscapes prevailed.

Keywords: climate change, multiple stressors, livelihoods, vulnerability-adaptation

Procedia PDF Downloads 405
1270 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 129
1269 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.

Keywords: information technology, data mining, scientific development, clustering

Procedia PDF Downloads 278
1268 Quantification of GHGs Emissions from Electricity and Diesel Fuel Consumption in Basalt Mining Industry in Thailand

Authors: S. Kittipongvises, A. Dubsok

Abstract:

The mineral and mining industry is necessary for countries to have an adequate and reliable supply of materials to meet their socio-economic development. Despite its importance, the environmental impacts from mineral exploration are hugely significant. This study aimed to investigate and quantify the amount of GHGs emissions emitted from both electricity and diesel vehicle fuel consumption in basalt mining in Thailand. Plant A, located in the northeastern region of Thailand, was selected as a case study. Results indicated that total GHGs emissions from basalt mining and operation (Plant A) were approximately 2,501,086 kgCO2e and 1,997,412 kgCO2e in 2014 and 2015, respectively. The estimated carbon intensity ranged between 1.824 kgCO2e to 2.284 kgCO2e per ton of rock product. Scope 1 (direct emissions) was the dominant driver of its total GHGs compared to scope 2 (indirect emissions). As such, transport related combustion of diesel fuels generated the highest GHGs emission (65%) compared to emissions from purchased electricity (35%). Some of the potential implications for mining entities were also presented.

Keywords: basalt mining, diesel fuel, electricity, GHGs emissions, Thailand

Procedia PDF Downloads 267
1267 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia

Authors: Aroma Elmina Martha

Abstract:

Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.

Keywords: abration, environmental damage, mining, shoreline

Procedia PDF Downloads 323
1266 Critical Review of Web Content Mining Extraction Mechanisms

Authors: Rabia Bashir, Sajjad Akbar

Abstract:

There is an inevitable demand of web mining due to rapid increase of huge information on the Internet, but the striking variety of web structures has made required content retrieval a difficult task. To counter this issue, Web Content Mining (WCM) emerges as a potential candidate which extracts and integrates suitable resources of data to users. In past few years, research has been done on several extraction techniques for WCM i.e. agent-based, template-based, assumption-based, statistic-based, wrapper-based and machine learning. However, it is still unclear that either these approaches are efficiently tackling the significant challenges of WCM or not. To answer this question, this paper identifies these challenges such as language independency, structure flexibility, performance, automation, dynamicity, redundancy handling, intelligence, relevant content retrieval, and privacy. Further, mapping of these challenges is done with existing extraction mechanisms which helps to adopt the most suitable WCM approach, given some conditions and characteristics at hand.

Keywords: content mining challenges, web content mining, web content extraction approaches, web information retrieval

Procedia PDF Downloads 549
1265 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
1264 Large-scale Foraging Behaviour of Free-ranging Goats: Influence of Herd Size, Landscape Quality and Season

Authors: Manqhai Kraai, Adrian M. Shrader, Peter F. Scogings

Abstract:

For animals living in herds, competition between group members increases as herd size increases. The intensity of this competition is likely greater across poor quality landscapes and during the dry season. In contrast to wild herbivores, herd size in domestic livestock is determined by their owners. This then raises the question, how do domestic livestock, like goats, reduce competition for food within these defined herds? To explore this question, large-scale foraging behaviour of both small (12 to 28 individuals) and large (42 to 83 individuals) herds of free-ranging goats were recorded in Tugela Ferry, KwaZulu-Natal, South Africa. The study was conducted on three different landscapes that varied in both food quality and availability, during the wet and dry seasons of 2013-2014. The goats were housed in kraals overnight and let out in the mornings to forage unattended. Thus, foraging decisions were made by the goats and not by herders. The large-scale foraging behaviours focussed on included, (i) total distance travelled by goats while foraging, (ii) distance travelled before starting to feed, (iii) travel speed, and (iv) feeding duration. This was done using Garmin Foretrex 401 GPS devices harnessed to two goats per herd. Irrespective of season, there was no difference in the total distance travelled by the different sized herds across the different quality landscapes. However, both small and large herds started feeding farther from the kraal in the dry compared to the wet season. Despite this, there was no significant seasonal difference in total amount of time the herds spent feeding across the different landscapes. Finally, both small and large herds increased their travel speed across all the landscapes in the dry season, but large herds travelled faster than small herds. This increase was likely to maximise the time that large herds could spend feeding in good areas. Ultimately, these results indicate that both small and large herds were affected by declines in food quality and quantity during the dry season. However, as large herds made greater behavioural adjustments compared to smaller herds (i.e., feeding farther away from the kraal and travelling faster), it appeared that they were more affected by the seasonal increases in intra-herd competition.

Keywords: distance, feeding duration, food availability, food quality, travel speed

Procedia PDF Downloads 126
1263 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area

Authors: Bernard Kumi-Boateng, Kofi Bonsu

Abstract:

The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.

Keywords: degradation, GIS, land, mining

Procedia PDF Downloads 356
1262 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 854
1261 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.

Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye

Abstract:

In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.

Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.

Procedia PDF Downloads 70
1260 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 509
1259 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
1258 Abandoned Mine Methane Mitigation in the United States

Authors: Jerome Blackman, Pamela Franklin, Volha Roshchanka

Abstract:

The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement.

Keywords: abandoned mines, coal mine methane, coal mining, methane emissions, methane mitigation, recovery and use

Procedia PDF Downloads 78
1257 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Authors: Faisal Alshuwaier, Ali Areshey

Abstract:

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.

Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification

Procedia PDF Downloads 583
1256 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain

Authors: Sabri Serkan Güllüoğlu

Abstract:

Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.

Keywords: data mining, association rule mining, market basket analysis, purchasing

Procedia PDF Downloads 484
1255 Small-Scale Mining Policies in Ghana: Miners' Knowledge, Attitudes and Practices

Authors: Franklin Nantui Mabe, Robert Osei

Abstract:

Activities and operations of artisanal small scale mining (ASM) have recently appealed to the attention of policymakers, researchers, and the general public in Ghana. This stems from the negative impacts of ASM operations on the environment and livelihoods of local inhabitants, as well as the disregard for available ASM mining policies. This study, therefore, investigates whether or not artisanal small-scale miners have enough knowledge of the mining policies and their implementations. The study adopted the Knowledge, Attitudes, and Practices (KAP) framework approach to design the research, collect and analyze primary data. The most aware ASM policy provision is the one that mandates the government to reserve demarcated ASM areas for Ghanaians, whilst the least aware provision is the one that admonishes the government to promote co-operative saving among ASM. The awareness index is lower than the attitude index towards the policy provisions. In terms of practices, miners continued to use bad practices with the associated negative impacts on the environment and rural livelihoods. It is therefore important for the government through mineral commission, district, municipal and metropolitan assemblies to intensify the education on the ASM policies. These could be done with the help of ASM associations. The current systems where a cluster of districts have a single Mineral Commission Office should be restructured to make sure that each mining district has an office.

Keywords: mining policies, KAP, awareness, artisanal small-scale mining

Procedia PDF Downloads 186
1254 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas

Authors: Simon Mensah Ofosu

Abstract:

Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.

Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables

Procedia PDF Downloads 95
1253 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 348
1252 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study

Authors: Zeba Mahmood

Abstract:

The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.

Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining

Procedia PDF Downloads 538
1251 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 326
1250 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining

Authors: G. Surendra Babu

Abstract:

We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.

Keywords: reclamation, open-pit mining, revegetation, reclamation methods

Procedia PDF Downloads 193
1249 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 250
1248 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)

Procedia PDF Downloads 432
1247 Modelling of Powered Roof Supports Work

Authors: Marcin Michalak

Abstract:

Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.

Keywords: machine modelling, underground mining, coal mining, structure

Procedia PDF Downloads 368
1246 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: classification, data mining, evaluation measures, groundwater

Procedia PDF Downloads 281
1245 A Recommender System Fusing Collaborative Filtering and User’s Review Mining

Authors: Seulbi Choi, Hyunchul Ahn

Abstract:

Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.

Keywords: Recommender system, Collaborative filtering, Text mining, Review mining

Procedia PDF Downloads 361
1244 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 118
1243 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis

Authors: Ylva Fältholm, Cathrine Norberg

Abstract:

One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.

Keywords: discourse, corpus linguistics, gender, mining

Procedia PDF Downloads 265
1242 Performing the Landscape: Temporary and Performative Practices in Landscape Production

Authors: Miguel Costa

Abstract:

Despite the "time" element being an intrinsic characteristic of the work with the landscape, its execution and completion are also often dependent on external factors, i.e., the slow bureaucratic procedures required for the implementation of a project. In the urban areas of the city, these conditions are even more present — some landscape projects are articulated with the architectural/urban design, transporting itself long, expensive and inflexible processes related with the constant transformations of contemporary urban culture, where the needs and expectations could change before the project is finished. However, despite the renewed interest and growing concern for issues related to the landscapes (particularly since the European Landscape Convention, its scope and fields of action, extended to all the landscapes and not just the selected ones), still lacks the need for a greater inclusion of citizens in its protection and construction processes as well as a greater transparency and clarity of the consequences and results of their active participation. This article aims to reflect on the production processes of urban landscapes, on its completion runtime and its relationship with the citizens by introducing temporary projects as a fieldwork methodology, as well as using the contribution of different professional practices and knowledge for its monitoring, execution, and implementation. These strategies address a more interdisciplinary, transdisciplinary and performative approach, not only from the ephemeral experience of objects and actions but also from the processes and the dynamic events that are organized from these objects and actions over the landscape. The goal is to discuss the results of these approaches on its different dimensions: critical dimension; experimental and strategic dimension; pedagogical dimension; political dimension; cultural.

Keywords: landscape fieldwork, interdisciplinarity, public inclusion, public participation, temporary projects, transdisciplinarity

Procedia PDF Downloads 324