Search results for: microbial induced calcite precipitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4463

Search results for: microbial induced calcite precipitation

4403 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model

Procedia PDF Downloads 252
4402 Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet

Authors: Tahar Abid, Haoues Ghouss, Abdelhamid Boubertakh

Abstract:

This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching.

Keywords: AlMgSi alloys, precipitation, hardening, activation energy

Procedia PDF Downloads 89
4401 Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob

Authors: Kessara Seneesrisakul, Erdogan Gulari, Sumaeth Chavadej

Abstract:

The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement.

Keywords: corncob, enzymatic hydrolysis, glucose, microbial pretreatment

Procedia PDF Downloads 585
4400 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium

Procedia PDF Downloads 385
4399 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 99
4398 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China

Authors: Yiyuan Tao

Abstract:

Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.

Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin

Procedia PDF Downloads 124
4397 Recovery of Boron as Homogeneous Perborate Particles from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation with Fluidized-Bed Homogeneous Granulation

Authors: Chiung-Chin Huang, Jui-Yen Lin, Yao-Hui Huang

Abstract:

Among current techniques of boron removal from wastewater with high boron concentration, chemical oxo-precipitation (COP) is one of the promising methods due to its milder condition. COP uses H2O2 to transform boric acid to perborates which can easily precipitate with barium ions at room temperature. However, the generation of the waste sludge that requires sludge/water separation and sludge dewatering is troublesome. This work presents an innovative technology which integrates chemical oxo-precipitation (COP) with fluidized-bed homogeneous granulation (FBHG) to reclaim boron as homogeneous perborate particles. By conducting COP in a fluidized-bed reactor, the barium perborate can be granulated to form homogeneous particles (>1.0 mm) with low water content (< 10%). Under the suitable condition, more than 70% of boron can be recovered from 600 ppm of boron solution and the residual boron is lower than 100 ppm.

Keywords: barium, perborate, chemical oxo-precipitation, boron removal, fluidized-bed, granulation

Procedia PDF Downloads 322
4396 Studying the Moisture Sources and the Stable Isotope Characteristic of Moisture in Northern Khorasan Province, North-Eastern Iran

Authors: Mojtaba Heydarizad, Hamid Ghalibaf Mohammadabadi

Abstract:

Iran is a semi-arid and arid country in south-western Asia in the Middle East facing intense climatological drought from the early times. Therefore, studying the precipitation events and the moisture sources and air masses causing precipitation has great importance in this region. In this study, the moisture sources and stable isotope content of precipitation moisture in three main events in 2015 have been studied in North-Eastern Iran. HYSPLIT model backward trajectories showed that the Caspian Sea and the mixture of the Caspian and Mediterranean Seas are dominant moisture sources for the studied events. This showed the role of cP (Siberian) and Mediterranean (MedT) air masses. Stable isotope studies showed that precipitation events originated from the Caspian Sea with lower Sea Surface Temperature (SST) have more depleted isotope values. However, precipitation events sourced from the mixture of the Caspian and the Mediterranean Seas (with higher SST) showed more enriched isotope values.

Keywords: HYSPLIT, Iran, Northern Khorasan, stable isotopes

Procedia PDF Downloads 132
4395 The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C.

Keywords: high manganese, heat treatment, SEM, TWIP steel, cold rolling, nickel

Procedia PDF Downloads 357
4394 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia

Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng

Abstract:

The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.

Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin

Procedia PDF Downloads 111
4393 Microbial Quality of Beef and Mutton in Bauchi Metropolis

Authors: Abdullahi Mohammed

Abstract:

The microbial quality of beef and mutton sold in four major markets of Bauchi metropolis was assessed in order to assist in ascertaining safety. Shops were selected from 'Muda Lawal', 'Yelwa', 'Wunti', and 'Gwallameji' markets. The total bacterial count was used as index of quality. A total of thirty two (32) samples were collected in two successive visits. The samples were packed and labelled in a sterile polythene bags for transportation to the laboratory. Microbial analysis was carried out immediately upon arrival under a septic condition, where aerobic plate was used in determining the microbial load. Result showed that beef and mutton from Gwallameji had the highest bacterial count of 9.065 X 105 cfu/ml and 8.325 X 105 cfu/ml for beef and mutton respectively followed by Wunti market (6.95 X 105 beef and 4.838 X 105 motton) and Muda Lawal (4.86 X 105 cfu/ml beef and 5.998 X 105 cfu/ml mutton). Yelwa had 5.175 X 105 and 5.30 X 105 for beef and mutton respectively. Bacterial species isolated from the samples were Escherichia coli, Salmonella spp, Streptococcus species and Staphylococcus species. However, results obtained from all markets showed that there was no significant differences between beef and mutton in terms of microbial quality.

Keywords: beef, mutton, salmonella, sterile

Procedia PDF Downloads 460
4392 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 174
4391 Comparison of Rumen Microbial Analysis Pipelines Based on 16s rRNA Gene Sequencing

Authors: Xiaoxing Ye

Abstract:

To investigate complex rumen microbial communities, 16S ribosomal RNA (rRNA) sequencing is widely used. Here, we evaluated the impact of bioinformatics pipelines on the observation of OTUs and taxonomic classification of 750 cattle rumen microbial samples by comparing three commonly used pipelines (LotuS, UPARSE, and QIIME) with Usearch. In LotuS-based analyses, 189 archaeal and 3894 bacterial OTUs were observed. The observed OTUs for the Usearch analysis were significantly larger than the LotuS results. We discovered 1495 OTUs for archaea and 92665 OTUs for bacteria using Usearch analysis. In addition, taxonomic assignments were made for the rumen microbial samples. All pipelines had consistent taxonomic annotations from the phylum to the genus level. A difference in relative abundance was calculated for all microbial levels, including Bacteroidetes (QIIME: 72.2%, Usearch: 74.09%), Firmicutes (QIIME: 18.3%, Usearch: 20.20%) for the bacterial phylum, Methanobacteriales (QIIME: 64.2%, Usearch: 45.7%) for the archaeal class, Methanobacteriaceae (QIIME: 35%, Usearch: 45.7%) and Methanomassiliicoccaceae (QIIME: 35%, Usearch: 31.13%) for archaeal family. However, the most prevalent archaeal class varied between these two annotation pipelines. The Thermoplasmata was the top class according to the QIIME annotation, whereas Methanobacteria was the top class according to Usearch.

Keywords: cattle rumen, rumen microbial, 16S rRNA gene sequencing, bioinformatics pipeline

Procedia PDF Downloads 88
4390 Looking for a Connection between Oceanic Regions with Trends in Evaporation with Continental Ones with Trends in Precipitation through a Lagrangian Approach

Authors: Raquel Nieto, Marta Vázquez, Anita Drumond, Luis Gimeno

Abstract:

One of the hot spots of climate change is the increment of ocean evaporation. The best estimation of evaporation, OAFlux data, shows strong increasing trends in evaporation from the oceans since 1978, with peaks during the hemispheric winter and strongest along the paths of the global western boundary currents and any inner Seas. The transport of moisture from oceanic sources to the continents is the connection between evaporation from the ocean and precipitation over the continents. A key question is to try to relate evaporative source regions over the oceans where trends have occurred in the last decades with their sinks over the continents to check if there have been also any trends in the precipitation amount or its characteristics. A Lagrangian approach based on FLEXPART and ERA-interim data is used to establish this connection. The analyzed period was 1980 to 2012. Results show that there is not a general pattern, but a significant agreement was found in important areas of climate interest.

Keywords: ocean evaporation, Lagrangian approaches, contiental precipitation, Europe

Procedia PDF Downloads 256
4389 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology (RSM)

Procedia PDF Downloads 398
4388 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria

Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi

Abstract:

The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.

Keywords: CRU, climate change, precipitation, SPI, temperature

Procedia PDF Downloads 89
4387 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation

Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath

Abstract:

Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.

Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD

Procedia PDF Downloads 537
4386 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 163
4385 Effect of Climate Change on Road Maintenance in Bangladesh

Authors: Mohammed Russedul Islam, Shah M. Muniruzzaman, M. Kamrul-Al-Masud, Syed Sadat Morshed

Abstract:

Bangladesh is one of the most climate vulnerable countries in the world. According to scientists it is predicted that temperature will raise 1-3% and precipitation 20% by 2050 in Bangladesh. Increased temperature and precipitation will deteriorate pavement structure in an accelerated rate. The study has found that pavement life will reduce significantly due to rise in temperature and precipitation in in a coastal road in Bangladesh. It will cause to increase the maintenance cost of the road. The study has found that reduction in pavement life will be caused due the decrease in stiffness and strength parameters of the pavement material due to high temperature and precipitation. It has found that use of new material costlier than the existing one will be necessary to prevent the reduction of pavement life. Eventually it will increase the re-construction cost of the road. The study has used mechanistic-empirical analysis method with a software GAMES (General analysis on multi-layered elastic systems) to find out the effect of temperature and precipitation rise on the pavement life. The study will help to guide road engineers of Bangladesh to prepare in advance to fight with the climate change effect.

Keywords: climate change, maintenance cost, mechanistic-empirical method, pavement life

Procedia PDF Downloads 372
4384 Projection of Climate Change over the Upper Ping River Basin Using Regional Climate Model

Authors: Chakrit Chotamonsak, Eric P. Salathé Jr, Jiemjai Kreasuwan

Abstract:

Dynamical downscaling of the ECHAM5 global climate model is applied at 20-km horizontal resolution using the WRF regional climate model (WRF-ECHAM5), to project changes from 1990–2009 to 2045–2064 of temperature and precipitation over the Upper Ping River Basin. The analysis found that monthly changes in daily temperature and precipitation over the basin for the 2045-2064 compared to the 1990-2009 are revealed over the basin all months, with the largest warmer in December and the smallest warmer in February. The future simulated precipitation is smaller than that of the baseline value in May, July and August, while increasing of precipitation is revealed during pre-monsoon (April) and late monsoon (September and October). This means that the rainy season likely becomes longer and less intensified during the rainy season. During the cool-dry season and hot-dry season, precipitation is substantial increasing over the basin. For the annual cycle of changes in daily temperature and precipitation over the upper Ping River basin, the largest warmer in the mean temperature over the basin is 1.93 °C in December and the smallest is 0.77 °C in February. Increase in nighttime temperature (minimum temperature) is larger than that of daytime temperature (maximum temperature) during the dry season, especially in wintertime (November to February), resulted in decreasing the diurnal temperature range. The annual and seasonal changes in daily temperature and precipitation averaged over the basin. The annual mean rising are 1.43, 1.54 and 1.30 °C for mean temperature, maximum temperature and minimum temperature, respectively. The increasing of maximum temperature is larger than that of minimum temperature in all months during the dry season (November to April).

Keywords: climate change, regional climate model, upper Ping River basin, WRF

Procedia PDF Downloads 383
4383 Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield

Authors: Yasir Arafat, Asma Shah, Hua Shao

Abstract:

Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement.

Keywords: intercropping, microbial community, LMWOAs, PGPR, soil chemical environment

Procedia PDF Downloads 84
4382 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia

Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond

Abstract:

The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.

Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers

Procedia PDF Downloads 302
4381 Impact of External Temperature on the Speleothem Growth in the Moravian Karst

Authors: Frantisek Odvarka

Abstract:

Based on the data from the Moravian Karst, the influence of the calcite speleothem growth by selected meteorological factors was evaluated. External temperature was determined as one of the main factors influencing speleothem growth in Moravian Karst. This factor significantly influences the CO₂ concentration in soil/epikarst, and cave atmosphere in the Moravian Karst and significantly contributes to the changes in the CO₂ partial pressure differences between soil/epikarst and cave atmosphere in Moravian Karst, which determines the drip water supersaturation with respect to the calcite and quantity of precipitated calcite in the Moravian Karst cave environment. External air temperatures and cave air temperatures were measured using a COMET S3120 data logger, which can measure temperatures in the range from -30 to +80 °C with an accuracy of ± 0.4 °C. CO₂ concentrations in the cave and soils were measured with a FT A600 CO₂H Ahlborn probe (value range 0 ppmv to 10,000 ppmv, accuracy 1 ppmv), which was connected to the data logger ALMEMO 2290-4, V5 Ahlborn. The soil temperature was measured with a FHA646E1 Ahlborn probe (temperature range -20 to 70 °C, accuracy ± 0.4 °C) connected to an ALMEMO 2290-4 V5 Ahlborn data logger. The airflow velocities into and out of the cave were monitored by a FVA395 TH4 Thermo anemometer (speed range from 0.05 to 2 m s⁻¹, accuracy ± 0.04 m s⁻¹), which was connected to the ALMEMO 2590-4 V5 Ahlborn data logger for recording. The flow was measured in the lower and upper entrance of the Imperial Cave. The data were analyzed in MS Office Excel 2019 and PHREEQC.

Keywords: speleothem growth, carbon dioxide partial pressure, Moravian Karst, external temperature

Procedia PDF Downloads 144
4380 Ecotoxicity Evaluation and Suggestion of Remediation Method of ZnO Nanoparticles in Aqueous Phase

Authors: Hyunsang Kim, Younghun Kim, Younghee Kim, Sangku Lee

Abstract:

We investigated ecotoxicity and performed an experiment for removing ZnO nanoparticles in water. Short-term exposure of hatching test using fertilized eggs (O. latipes) showed deformity in 5 ppm of ZnO nanoparticles solution, and in 10ppm ZnO nanoparticles solution delayed hatching was observed. Herein, chemical precipitation method was suggested for removing ZnO nanoparticles in water. The precipitated ZnO nanoparticles showed the form of ZnS after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The removal efficiency of ZnO nanoparticles in water was closed to 100% for two case. In ecotoxicity evaluation of as-precipitated ZnS and Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is noted that this precipitation treatment of ZnO is effective to reduce the potential cytotoxicity.

Keywords: ZnO nanopraticles, ZnS, Zn3(PO4)2, ecotoxicity evaluation, chemical precipitation

Procedia PDF Downloads 278
4379 Effect of Geomagnetic Field on Motion of Conductor

Authors: Bharti Gupta, Alaukik Sharma

Abstract:

The first aim is to determine the effect of the Earth's magnetic field on the motion of a conductor to evaluate the variations of the orbital elements of the conductor due to these effects. The effects of Earth's magnetic field on the motion of conductors have been studied at different heights, longitudes and latitudes. When the conductor cut the geomagnetic line of force, then an electro-motive force (EMF) is induced across to the conductor. Due to this induced EMF, an induced current will flow through the conductor. Resulting, a Lorentz force will be applied on the conductor who opposes the motion of the conductor. So our second aim is to determine the accurate value of Induced EMF and induced Lorentz Force at different heights, longitudes and latitudes.

Keywords: induced EMF, Lorentz force, geomagnetic lines of force, moving conductor

Procedia PDF Downloads 156
4378 Preparation of Li Ion Conductive Ceramics via Liquid Process

Authors: M. Kotobuki, M. Koishi

Abstract:

Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.

Keywords: co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte

Procedia PDF Downloads 352
4377 Hard Water Softening by Chronoamperometry and Impedancemetry

Authors: Samira Ghizellaoui, Manel Boumagoura, Rayane Menzri

Abstract:

The ground water Hamma rich in calcium and bicarbonate likely to deposit the tartar and subsequently lead to the obstruction of the pipes and the seizing of the stopping devices in addition to the financial losses resulting there from. It is therefore necessary to optimise an antiscaling treatment in order to avoid the risk of formation of tartar deposits in the various installations and to protect the equipment in contact with this water. MgCl2 is the chemical inhibitor which was tested. To optimise the effective concentration of this product, we used two electrochemical methods (chronoamperometry and impedancemetry) to identify the best method for optimizing antiscaling treatment. IR, RX, Raman spectroscopy and SEM indicate that the raw waters of Hamma give precipitates in the form of calcite (the most stable form), with the presence of a small amount of magnesian calcite and aragonite. In the presence of the inhibitor (MgCl2), calcium carbonate changes morphology to other forms that do not exist in the deposit obtained from the raw water (vaterite and calcium carbonate monohydrate).

Keywords: calcium carbonate, MgCl2, chronoamperometry, Impedancemetry

Procedia PDF Downloads 88
4376 The Engineering Properties of Jordanian Marble

Authors: Mousa Bani Baker, Raed Abendeh, Zaidoon Abu Salem, Hesham Ahmad

Abstract:

This research paper was commissioned to discuss the Jordanian marble, which is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Geologists use the term "marble" to refer to metamorphosed limestone; however, stonemasons use the term more broadly to encompass unmetamorphised limestone. Marble is commonly used for sculpture and as a building material. The marble has many uses; one of them is using the white marble that has been prized for its use in sculptures since classical times. This preference has to do with its softness, relative isotropy and homogeneity, and a relative resistance to shattering. Another use of it is the construction marble which is “a stone which is composed of calcite, dolomite or serpentine which is capable of taking a polish” Marble Institute of America. This report focuses most about the marble in Jordan and its properties: rock definition, physical properties, the marble occurrences in Jordan, types of Jordanian marble and their prices and test done on this marble.

Keywords: marble, metamorphic, non-foliated, compressive strength, recrystallized, Moh’s hardness, abrasion, absorption, modulus of rupture, porosity

Procedia PDF Downloads 373
4375 Microbial Load of Fecal Material of Broiler Birds Administered with Lagenaria Breviflora Extract

Authors: Adeleye O. O., T. M. Obuotor, A. O. Kolawole, I. O. Opowoye, M. I. Olasoju, L. T. Egbeyale, R. A. Ajadi

Abstract:

This study investigated the effect of Lagenaria breviflora on broiler poultry birds, including its effect on the microbial count of the poultry droppings. A total of 240-day-old broiler chicks were randomly assigned to six groups, with four replicates per group. The first group was the control, while the other four groups were fed water containing 300g/L and 500g/L concentrations of Lagenaria breviflora twice and thrice daily. The microbial load was determined using the plate count method. The results showed that the administration of Lagenaria breviflora in the water of broiler birds significantly improved their growth performance with an average weight gain range of 1.845g - 2.241g. Mortality rate was at 0%. The study also found that Lagenaria breviflora had a significant effect on the microbial count of the poultry droppings with colony count values from 3.5 x 10-7 - 9.9 x10-7CFU/ml, The total coliforms (Escherichia coli, and Salmonella sp.) was obtained as 1 x 10 -5CFU/ml. The reduction in microbial counts of the poultry droppings could be attributed to the antimicrobial properties of Lagenaria breviflora, which contain phytochemicals reported to possess antimicrobial activity. Therefore, the inclusion of Lagenaria breviflora in the diets of broiler poultry could be an effective strategy for improving growth performance and immune function and reducing the microbial load of poultry droppings, which can help to mitigate the risk of disease transmission to humans and other animals.

Keywords: gut microbes, bacterial count, lagenaria breviflora, coliforms

Procedia PDF Downloads 96
4374 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts

Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.

Abstract:

The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.

Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation

Procedia PDF Downloads 149