Search results for: computacional fluids dynamics
3239 Dynamics, Hierarchy and Commensalities: A Study of Inter Caste Relationship in a North Indian Village
Authors: K. Pandey
Abstract:
The present study is a functional analysis of the relationship between castes which indicates the dynamics of the caste structure in the rural setting. The researcher has tried to show both the cooperation and competition on important ceremonial and social occasions. The real India exists in the villages, so we need to know about their solidarity and also what the village life is and has been shaping into. We need to emphasize a microcosmic study of Indian rural life. Furthermore, caste integration is an acute problem country faces today. To resolve this we are required to know the dynamics of behavior of the people of different castes and for the study of the caste dynamics a study of caste relations are needed. The present study is an attempt in this direction.Keywords: hierarchial groups, jajmani system, functional dependence, commensalities
Procedia PDF Downloads 2803238 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound
Authors: K. Manmi, Q. X. Wang
Abstract:
This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume.Keywords: microbubble dynamics, bubble jetting, viscous effect, boundary integral method
Procedia PDF Downloads 4833237 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids
Authors: Devesh Motwani, Amey Kashyap
Abstract:
Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.Keywords: economics, guargum, viscofier, CMC, thermal stability
Procedia PDF Downloads 4703236 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields
Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek
Abstract:
Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity
Procedia PDF Downloads 2663235 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls
Authors: Ramdas Sonawane, Mahaveer Gadiya
Abstract:
The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations
Procedia PDF Downloads 4443234 To Individualisation of Subject, Donar, by Determination of Serological Markers from Obtain Biological Fluid at Crime Scene
Authors: Arun Kumar, Ravindra Pal Verma, Harsh Sharma, Shani Kumar
Abstract:
For the present study samples was collected from 20 donors with unknown blood group and secretor status had been determined from saliva by using biological fluid. ABO typing on the concentrated samples was successfully performed after 1 month of storage. Urine stained clothing samples are often submitted to forensic science laboratories for ABH blood group antigen determination. The serogenetic markers of semen stains submitted can be used to determine the origin of any of these samples. ABH blood group substances have previously been identified from urine. ABH blood group substance is low in urine in comparison with other body fluids.Keywords: ABH blood group, crime scene, serological markers, body fluids and urine
Procedia PDF Downloads 5873233 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 3803232 A Novel Comparison Scheme for Thermal Conductivity Enhancement of Heat Transfer
Authors: Islam Tarek, Moataz Soliman
Abstract:
With the amazing development of nanoscience’s and the discovery of the unique properties of nanometric materials, the ideas of scientists and researchers headed to take advantage of this progress in various fields, and one of the most important of these areas is the field of heat transfer and benefit from it in saving energy used for heat transfer, so nanometric materials were used to improve the properties of heat transfer fluids and increase the efficiency of the liquid. In this paper, we will compare two types of heat transfer fluid, one industrial type (the base fluid is a mix of ethylene glycol and deionized water ) and another natural oils(the base fluid is a mix of jatropha oil and expired olive oil), explaining the method of preparing each of them, starting from the method of preparing CNT, collecting and sorting jatropha seeds, and the most appropriate method for extracting oil from them, and characterization the both of two fluids and when to use both.Keywords: nanoscience, heat transfer, thermal conductivity, jatropha oil
Procedia PDF Downloads 2173231 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids
Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan
Abstract:
Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers
Procedia PDF Downloads 3933230 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 2753229 CFD Simulation of Surge Wave Generated by Flow-Like Landslides
Authors: Liu-Chao Qiu
Abstract:
The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.Keywords: flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow
Procedia PDF Downloads 4163228 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles
Authors: Zhao Bo
Abstract:
The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading
Procedia PDF Downloads 2383227 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation
Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi
Abstract:
The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle
Procedia PDF Downloads 2813226 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 4183225 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation
Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha
Abstract:
This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.Keywords: pressure contour, surface tension, volume of fluid, velocity field
Procedia PDF Downloads 4053224 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 183223 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.Keywords: MHD, channel clots, magnetic nanoparticles, simulations
Procedia PDF Downloads 3683222 Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes
Authors: Reza Sabbagh, Linda Hasanovich, Aleksey Baldygin, David S. Nobes, Prashant R. Waghmare
Abstract:
The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally.Keywords: capillary, non-Newtonian flow, shadowgraphy, rising velocity
Procedia PDF Downloads 2043221 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Meziane Belkacem
Abstract:
We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.Keywords: Physics, optics, nonlinear dynamics, chaos
Procedia PDF Downloads 1563220 Prescription of Maintenance Fluids in the Emergency Department
Authors: Adrian Craig, Jonathan Easaw, Rose Jordan, Ben Hall
Abstract:
The prescription of intravenous fluids is a fundamental component of inpatient management, but it is one which usually lacks thought. Fluids are a drug, which like any other can cause harm when prescribed inappropriately or wrongly. However, it is well recognised that it is poorly done, especially in the acute portals. The National Institute for Health and Care Excellence (NICE) recommends 1mmol/kg of potassium, sodium, and chloride per day. With various options of fluids, clinicians tend to face difficulty in choosing the most appropriate maintenance fluid, and there is a reluctance to prescribe potassium as part of an intravenous maintenance fluid regime. The aim was to prospectively audit the prescription of the first bag of intravenous maintenance fluids, the use of urea and electrolytes results to guide the choice of fluid and the use of fluid prescription charts, in a busy emergency department of a major trauma centre in Stoke-on-Trent, United Kingdom. This was undertaken over a week in early November 2016. Of those prescribed maintenance fluid only 8.9% were prescribed a fluid which was most appropriate for their daily electrolyte requirements. This audit has helped to highlight further the issues that are faced in busy Emergency Departments within hospitals that are stretched and lack capacity for prompt transfer to a ward. It has supported the findings of NICE, that emergency admission portals such as Emergency Departments poorly prescribed intravenous fluid therapy. The findings have enabled simple steps to be taken to educate clinicians about their fluid of choice. This has included: posters to remind clinicians to consider the urea and electrolyte values before prescription, suggesting the inclusion of a suggested intravenous fluid of choice in the prescription chart of the trust and the inclusion of a session within the introduction programme revising intravenous fluid therapy and daily electrolyte requirements. Moving forward, once the interventions have been implemented then, the data will be reaudited in six months to note any improvement in maintenance fluid choice. Alongside this, an audit of the rate of intravenous maintenance fluid therapy would be proposed to further increase patient safety by avoiding unintentional fluid overload which may cause unnecessary harm to patients within the hospital. In conclusion, prescription of maintenance fluid therapy was poor within the Emergency Department, and there is a great deal of opportunity for improvement. Therefore, the measures listed above will be implemented and the data reaudited.Keywords: chloride, electrolyte, emergency department, emergency medicine, fluid, fluid therapy, intravenous, maintenance, major trauma, potassium, sodium, trauma
Procedia PDF Downloads 3223219 Fast-Forward Problem in Asymmetric Double-Well Potential
Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura
Abstract:
The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field
Procedia PDF Downloads 3383218 The Impact of Post-Traumatic Stress Disorder (PTSD) on Marital Satisfaction in Iranian Couples: The Mediating Role of Sexual and Romantic Relationship Dynamics
Authors: Melika Masjedi
Abstract:
Post-Traumatic Stress Disorder (PTSD) has a significant impact on the mental health and relationship dynamics of couples, leading to decreased marital satisfaction. This study examines the mediating role of sexual and romantic relationship dynamics in relation to PTSD and marital satisfaction among Iranian couples. Using a sample of 107 participants, quantitative methods were utilized to assess variables such as relationship functioning, PTSD symptom severity, and the influence of sexual and romantic interactions. The findings demonstrate a strong correlation between heightened PTSD symptoms and reduced marital satisfaction, particularly in the domains of intimacy and emotional connection. The study highlights the importance of addressing relational dynamics to improve marital outcomes in PTSD-affected couples.Keywords: intimacy, marital satisfaction, PTSD, relationship dynamics, trauma
Procedia PDF Downloads 163217 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers
Authors: Ahmed R. Ballil
Abstract:
Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design
Procedia PDF Downloads 1483216 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains
Authors: Christian Angerer, Markus Lienkamp
Abstract:
Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx
Procedia PDF Downloads 4163215 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions
Authors: Megh Patel, Arjun Chauhan, Jay Thakkar
Abstract:
Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers
Procedia PDF Downloads 2583214 An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics
Authors: Boguslaw Schreyer
Abstract:
In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot’s dynamics are also shown.Keywords: dynamics, mobile, robot, wheeled mobile robots
Procedia PDF Downloads 3363213 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa
Authors: Christopher I. Ifeacho, Adeleke Omolade
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship
Procedia PDF Downloads 993212 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 3593211 Multithreading/Multiprocessing Simulation of The International Space Station Multibody System Using A Divide and Conquer Dynamics Formulation with Flexible Bodies
Authors: Luong A. Nguyen, Elihu Deneke, Thomas L. Harman
Abstract:
This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm is an extension of Featherstone’s divide and conquer approach to include the flexible-body dynamics formulation. The equations of motion, configured for the International Space Station (ISS) with its robotic manipulator arm as a system of articulated flexible bodies, are implemented in separate computer processors. The performance of this divide-and-conquer algorithm implementation in multiple processors is compared with an existing method implemented on a single processor.Keywords: multibody dynamics, multiple processors, multithreading, divide-and-conquer algorithm, computational efficiency, flexible body dynamics
Procedia PDF Downloads 3373210 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa
Authors: Christopher Ikechukwu Ifeacho
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability
Procedia PDF Downloads 21