Search results for: bomb blast attacks
773 Cloud Computing: Deciding Whether It Is Easier or Harder to Defend Against Cyber Attacks
Authors: Emhemed Shaklawoon, Ibrahim Althomali
Abstract:
We propose that we identify different defense mechanisms that were used before the introduction of the cloud and compare if their protection mechanisms are still valuable and to what degree. Note that in order to defend against vulnerability, we must know how this vulnerability is abused in an attack. Only then, we will be able to recognize if it is easier or harder to defend against cyber attacks.Keywords: cloud computing, privacy, cyber attacks, defend the cloud
Procedia PDF Downloads 422772 Efficient Iterative V-BLAST Detection Technique in Wireless Communication System
Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song
Abstract:
Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMOOFDM system is important issue. In this paper, efficient iterative VBLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6 % less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRDM, DFE, iterative scheme, channel condition
Procedia PDF Downloads 527771 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction
Procedia PDF Downloads 672770 Early-Age Mechanical and Thermal Performance of GGBS Concrete
Authors: Kangkang Tang
Abstract:
A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.Keywords: thermal effect, GGBS, concrete strength and testing, sustainability
Procedia PDF Downloads 406769 Tamper Resistance Evaluation Tests with Noise Resources
Authors: Masaya Yoshikawa, Toshiya Asai, Ryoma Matsuhisa, Yusuke Nozaki, Kensaku Asahi
Abstract:
Recently, side-channel attacks, which estimate secret keys using side-channel information such as power consumption and compromising emanations of cryptography circuits embedded in hardware, have become a serious problem. In particular, electromagnetic analysis attacks against cryptographic circuits between information processing and electromagnetic fields, which are related to secret keys in cryptography circuits, are the most threatening side-channel attacks. Therefore, it is important to evaluate tamper resistance against electromagnetic analysis attacks for cryptography circuits. The present study performs basic examination of the tamper resistance of cryptography circuits using electromagnetic analysis attacks with noise resources.Keywords: tamper resistance, cryptographic circuit, hardware security evaluation, noise resources
Procedia PDF Downloads 501768 Analysis of the Behavior of the Structure Under Internal Anfo Explosion
Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim
Abstract:
Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety
Procedia PDF Downloads 77767 SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy
Authors: Neda Seyyedi, Reza Berangi
Abstract:
Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism.Keywords: VOIP networks, flooding attacks, entropy, computer networks
Procedia PDF Downloads 403766 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means
Procedia PDF Downloads 289765 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 101764 4P-Model of Information Terrorism
Authors: Nataliya Venelinova
Abstract:
The paper proposes a new interdisciplinary model of reconsidering the role of mass communication effects by coverage of terrorism. The idea of 4P model is based on the synergy, created by the information strategy of threat, predominantly used by terrorist groups, the effects of mediating the symbolic action of the terrorist attacks or the taking of responsibility of any attacks, and the reshaped public perception for security after the attacks being mass communicated. The paper defines the mass communication cycle of terrorism, which leads not only to re-agenda setting of the societies, but also spirally amplifying the effect of propagating fears by over-informing on terrorism attacks. This finally results in the outlining of the so called 4P-model of information terrorism: mass propaganda, panic, paranoia and pandemic.Keywords: information terrorism, mass communication cycle, public perception, security
Procedia PDF Downloads 169763 Numerical Investigation of Fiber-Reinforced Polymer (FRP) Panels Resistance to Blast Loads
Authors: Sameh Ahmed, Khaled Galal
Abstract:
Fiber-reinforced polymer (FRP) sandwich panels are increasingly making their way into structural engineering applications. One of these applications is the blast mitigation. This is attributed to FRP ability of absorbing considerable amount of energy relative to their low density. In this study, FRP sandwich panels are numerically studied using an explicit finite element code ANSYS AUTODYN. The numerical model is then validated with the experimental field tests in the literature. The inner core configurations that have been studied in the experimental field tests were formed from different orientations of the honeycomb shape. On the other hand, the conducted numerical study has proposed a new core configuration. The new core configuration is formulated from a combination of woven and honeycomb shapes. Throughout this study, two performance parameters are considered; the amount of the energy absorbed by the panels and the peak deformation of the panels. Following, a parametric study has been conducted with more variations of the studied parameters to examine the enhancement of the panels' performance. It is found that the numerical results have shown a good agreement with the experimental measurements. Furthermore, the analyses have revealed that using the proposed core configuration obviously enhances the FRP panels’ behavior when subjected to blast loads.Keywords: blast load, fiber reinforced polymers, finite element modeling, sandwich panels
Procedia PDF Downloads 311762 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 208761 Interrogating the Impact of Insurgency Attacks on Vulnerable Groups in West Africa: Implications for Global Security
Authors: Godiya Atsiya Pius
Abstract:
The recent dimension of terrorist attacks and violence in West Africa and Nigeria in particular has attracted both academic and global concerns. Children, young girls and women are now victims of violent attacks and insurgency in their own country. Today, we have a reverse situation where women and children were spared during violence in the past. Empirical evidence shows that millions of children, young girls and women are caught up in violent attacks in which they are not merely spectatorial, but victims of circumstance. Some fall victims of a general onslaught against civilians by the drivers of such conflicts. Others die as part of a calculated genocide. Still others are taken as hostages as part of a deliberate attack on them. With particular reference to over 200 Chibok school girls that were abducted by the Boko Haram Islamic sect in Maiduguri, Borno state, Nigeria, this study shall attempt a theoretical exploration of the circumstances surrounding the insurgency attacks on these categories of vulnerable groups in Nigeria. This paper also intends to examine the nature, dimensions, causes, effects as well as implications of these attacks on women and children in West Africa. The paper shall sum up with conclusion and possible recommendations that could help the region in the 21st century and beyond.Keywords: insurgency, gender, violence, security, vulnerable groups
Procedia PDF Downloads 470760 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution
Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla
Abstract:
The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad
Procedia PDF Downloads 91759 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 93758 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 192757 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 233756 Engineering the Human Mind: Social Engineering Attack Using Kali Linux
Authors: Joy Winston James, Abdul Kadher Jilani
Abstract:
This review article provides a comprehensive overview of social engineering attacks, specifically those executed through the Kali Linux operating system. It aims to present an in-depth analysis of the background and importance of social engineering in cybersecurity, the tools, and techniques used in these attacks, real-world case studies that demonstrate their effectiveness, and ethical considerations that need to be taken into account while using them. The article highlights the Kali Linux tools that are commonly used in social engineering attacks, including SET, Metasploit, and BeEF, and discusses techniques such as phishing, pretexting, and baiting that are crucial in conducting successful social engineering attacks. It further explores real-world case studies that demonstrate the effectiveness of these techniques, emphasizing the importance of implementing effective countermeasures to reduce the risk of successful social engineering attacks. Moreover, the article sheds light on ethical considerations that need to be taken into account while using social engineering tools, emphasizing the importance of using them ethically and legally. Finally, the article provides potential countermeasures such as two-factor authentication, strong password policies, and regular security audits to help individuals and organizations better protect themselves against this growing threat. By understanding the tools and techniques used in social engineering attacks and implementing appropriate countermeasures, individuals and organizations can minimize the risk of successful social engineering attacks and improve their cybersecurity posture. To illustrate the effectiveness of social engineering attacks, we present real-world case studies that demonstrate how easily individuals and organizations can fall prey to these attacks. We also discuss ethical considerations that must be taken into account while using social engineering tools, emphasizing the need for responsible and legal use of these tools.Keywords: pen testing, hacking, Kali Linux, social engineering
Procedia PDF Downloads 93755 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 0754 Development of Environmentally Clean Construction Materials Using Industrial Waste from Kazakhstan
Authors: Galiya Zhanzakovna Alzhanova, Yelaman Kanatovich Aibuldinov, Zhanar Baktybaevna Iskakova, Gaziz Galymovich Abdiyussupov, Madi Toktasynuly Omirzak, Aizhan Doldashevna Gazizova
Abstract:
The sustainable use of industrial waste has recently increased due to increased environmental problems in landfills. One of the best ways to utilise waste is as a road base material. Industrial waste is a less costly and more efficient way to strengthen local soils than by introducing new additive materials. This study explored the feasibility of utilising red mud, blast furnace slag, and lime production waste to develop environmentally friendly construction materials for stabilising natural loam. Four different ratios of red mud (20, 30, and 40%), blast furnace slag (25, 30, and 35%), lime production waste (4, 6, and 8%), and varied amounts of natural loam were combined to produce nine different mixtures. The results showed that the sample with 40% red mud, 35% blast furnace slag, and 8% lime production waste had the highest strength. The sample's measured compressive strength for 90 days was 7.38 MPa, its water resistance for the same period was 7.12 MPa, and its frost resistance for the same period was 7.35 MP; low linear expansion met the requirements of the Kazakh regulations for first-class building materials. The study of mineral composition showed that there was no contamination with heavy metals or dangerous substances. Road base materials made of red mud, blast furnace slag, lime production waste, and natural loam mix can be employed because of their durability and environmental performance. The chemical and mineral composition of raw materials was determined using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, atomic absorption spectroscopy, and axial compressive strength were examined.Keywords: blast furnace slag, lime production waste, natural loam stabilizing, red mud, road base material
Procedia PDF Downloads 107753 User’s Susceptibility Factors to Malware Attacks: A Systematic Literature Review
Authors: Awad A. Younis, Elise Stronberg, Shifa Noor
Abstract:
Malware attacks due to end-user vulnerabilities have been noticeably increased in the past few years. Investigating the factors that make an end-user vulnerable to those attacks is critical because they can be utilized to set up proactive strategies such as awareness and education to mitigate the impacts of those attacks. Some existing studies investigated demographic, behavioral, and cultural factors that make an end-user susceptible to malware attacks. However, it has been challenging to draw more general conclusions from individual studies due to the varieties in the type of end-users and different types of malware. Therefore, we conducted a systematic literature review (SLR) of the existing research for end-user susceptibility factors to malware attacks. The results showed while some demographic factors are mostly associated with malware infection regardless of the end users' type, age, and gender are not consistent among the same and different types of end-users. Besides, the association of culture and personality factors with malware infection are consistent in most of the selected studies and for all type of end-users. Moreover, malware infection varies based on age, geographic location, and host types. We propose that future studies should carefully take into consideration the type of end-users because different end users may be exposed to different threats or be targeted based on their user domains’ characteristics. Additionally, as different types of malware use different tactics to trick end-users, taking the malware types into consideration is important.Keywords: cybersecurity, malware, end-users, demographics, personality, culture, systematic literature review
Procedia PDF Downloads 229752 Network Security Attacks and Defences
Authors: Ranbir Singh, Deepinder Kaur
Abstract:
Network security is an important aspect in every field like government offices, Educational Institute and any business organization. Network security consists of the policies adopted to prevent and monitor forbidden access, misuse, modification, or denial of a computer network. Network security is very complicated subject and deal by only well trained and experienced people. However, as more and more people become wired, an increasing number of people need to understand the basics of security in a networked world. The history of the network security included an introduction to the TCP/IP and interworking. Network security starts with authenticating, commonly with a username and a password. In this paper, we study about various types of attacks on network security and how to handle or prevent this attack.Keywords: network security, attacks, denial, authenticating
Procedia PDF Downloads 402751 Developing Cyber Security Asset Mangement Framework for UK Rail
Authors: Shruti Kohli
Abstract:
The sophistication and pervasiveness of cyber-attacks are constantly growing, driven partly by technological progress, profitable applications in organized crime and state-sponsored innovation. The modernization of rail control systems has resulted in an increasing reliance on digital technology and increased the potential for security breaches and cyber-attacks. This research track showcases the need for developing a secure reusable scalable framework for enhancing cyber security of rail assets. A cyber security framework has been proposed that is being developed to detect the tell-tale signs of cyber-attacks against industrial assets.Keywords: cyber security, rail asset, security threat, cyber ontology
Procedia PDF Downloads 428750 Empirical Analysis of the Global Impact of Cybercrime Laws on Cyber Attacks and Malware Types
Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke
Abstract:
The study focused on probing the effectiveness of online consumer privacy and protection laws, electronic transaction laws, privacy and data protection laws, and cybercrime legislation amid frequent cyber-attacks and malware types worldwide. An empirical analysis was engaged to uncover ties and causations between the stringency and implementation of these legal structures and the prevalence of cyber threats. A deliberate sample of seventy-eight countries (thirteen countries each from six continents) was chosen as sample size to study the challenges linked with trending regulations and possible panoramas for improving cybersecurity through refined legal approaches. Findings establish if the frequency of cyber-attacks and malware types vary significantly. Also, the result proved that various cybercrime laws differ statistically, and electronic transactions law does not statistically impact the frequency of cyber-attacks. The result also statistically revealed that the online Consumer Privacy and Protection law does not influence the total number of cyber-attacks. In addition, the results implied that Privacy and Data Protection laws do not statistically impact the total number of cyber-attacks worldwide. The calculated value also proved that cybercrime law does not statistically impact the total number of cyber-attacks. Finally, the computed value concludes that combined multiple cyber laws do not significantly impact the total number of cyber-attacks worldwide. Suggestions were produced based on findings from the study, contributing to the ongoing debate on the validity of legal approaches in battling cybercrime and shielding consumers in the digital age.Keywords: cybercrime legislation, cyber attacks, consumer privacy and protection law, detection, electronic transaction law, prevention, privacy and data protection law, prohibition, prosecution
Procedia PDF Downloads 39749 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 416748 Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity
Authors: Jean Rosemond Dora, Karol Nemoga
Abstract:
In this work, we tackle a frequent problem that frequently occurs in the cybersecurity field which is the exploitation of websites by XSS attacks, which are nowadays considered a complicated attack. These types of attacks aim to execute malicious scripts in a web browser of the client by including code in a legitimate web page. A serious matter is when a website accepts the “user-input” option. Attackers can exploit the web application (if vulnerable), and then steal sensitive data (session cookies, passwords, credit cards, etc.) from the server and/or from the client. However, the difficulty of the exploitation varies from website to website. Our focus is on the usage of ontology in cybersecurity against XSS attacks, on the importance of the ontology, and its core meaning for cybersecurity. We explain how a vulnerable website can be exploited, and how different JavaScript payloads can be used to detect vulnerabilities. We also enumerate some tools to use for an efficient analysis. We present detailed reasoning on what can be done to improve the security of a website in order to resist attacks, and we provide supportive examples. Then, we apply an ontology model against XSS attacks to strengthen the protection of a web application. However, we note that the existence of ontology does not improve the security itself, but it has to be properly used and should require a maximum of security layers to be taken into account.Keywords: cybersecurity, web application vulnerabilities, cyber threats, ontology model
Procedia PDF Downloads 170747 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads
Procedia PDF Downloads 343746 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm
Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio
Abstract:
The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.Keywords: algorithm, CoAP, DoS, IoT, machine learning
Procedia PDF Downloads 76745 The Effects of T-Walls on Urban Landscape and Quality of Life and Anti-Terror Design Concept in Kabul, Afghanistan
Authors: Fakhrullah Sarwari, Hiroko Ono
Abstract:
Kabul city has suffered a lot in 40 years of conflict of civil war and “The war on terror”. After the invasion of Afghanistan by the United States of America and its allies in 2001, the Taliban was removed from operational power, but The Taliban and other terrorist groups remained in remote areas of the country, they started suicide attacks and bombings. Hence to protect from these attacks officials surrounded their office buildings and houses with concrete blast walls. It gives a bad landscape to the city and creates traffic congestions. Our research contains; questionnaire, reviewing Kabul Municipality documents and literature review. Questionnaires were distributed to Kabul citizens to find out how people feel by seeing the T-Walls on Kabul streets? And what problems they face with T-Walls. “The T-Walls pull down commission” of Kabul Municipality documents were reviewed to find out what caused the failure of this commission. A literature review has been done to compare Kabul with Washington D.C on how they designed the city against terrorism threat without turning the cities into lock down. Bogota city of Columbia urban happiness movement is reviewed and compared with Kabul. The finding of research revealed that citizens of Kabul want security but not at the expense of public realm and creating the architecture of fear. It also indicates that increasing the T-walls do not give secure feeling but instead; it increases terror, hatred and affect people’s optimism. At the end, a series of recommendation is suggested on the issue.Keywords: anti-terror design, Kabul, T-Walls, urban happiness
Procedia PDF Downloads 170744 Evaluation of Properties of Alkali Activated Slag Concrete Blended with Polypropylene Shredding and Admixture
Authors: Jagannath Prasad Tegar, Zeeshan Ahmad
Abstract:
The Ordinary Portland Cement (OPC) is a major constituent of concrete, which is being used extensively since last half century. The production of cement is impacting not only environment alone, but depleting natural materials. During the past 3 decades, the scholars have carried out studies and researches to explore the supplementary cementatious materials such as Ground granulated Blast furnace slag (GGBFS), silica fumes (SF), metakaolin or fly ash (FA). This has contributed towards improved cementatious materials which are being used in construction, but not the way it is supposed to be. The alkali activated slag concrete is another innovation which has constituents of cementatious materials like Ground Granuled Blast Furnace Slag (GGBFS), Fly Ash (FA), Silica Fumes (SF) or Metakaolin. Alkaline activators like Sodium Silicate (Na₂SiO₃) and Sodium Hydroxide (NaOH) is utilized. In view of evaluating properties of alkali activated slag concrete blended with polypropylene shredding and accelerator, research study is being carried out. This research study is proposed to evaluate the effect of polypropylene shredding and accelerating admixture on mechanical properties of alkali-activated slag concrete. The mechanical properties include the compressive strength, splitting tensile strength and workability. The outcomes of this research are matched with the hypothesis and it is found that 27% of cement can be replaced with the ground granulated blast furnace slag (GGBFS) and for split tensile strength 20% replacement is achieved. Overall it is found that 20% of cement can be replaced with ground granulated blast furnace slag. The tests conducted in the laboratory for evaluating properties such as compressive strength test, split tensile strength test, and slump cone test. On the aspect of cost, it is substantially benefitted.Keywords: ordinary Portland cement, activated slag concrete, ground granule blast furnace slag, fly ash, silica fumes
Procedia PDF Downloads 175