Search results for: automated diagnoses
1001 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy
Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria
Abstract:
This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.Keywords: automation, control, sunflower, irrigation, programming, renewable energy
Procedia PDF Downloads 3991000 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.Keywords: disturbance automation, electric power grid, smart grid, smart switches
Procedia PDF Downloads 309999 Automated Marker Filling System
Authors: Pinisetti Swami Sairam, Meera C. S.
Abstract:
Marker pens are widely used all over the world, mainly in educational institutions due to their neat, accurate and easily erasable nature. But refilling the ink in these pens is a tedious and time consuming job. Besides, it requires careful handling of the pens and ink bottle. A fully automated marker filling system is a solution developed to overcome this problem. The system comprises of pneumatics and electronics modules as well as PLC control. The system design is done in such a way that the empty markers are dumped in a marker container which then sent through different modules of the system in order to refill it automatically. The filled markers are then collected in a marker container. Refilling of ink takes place in different stages inside the system. An ink detecting system detects the colour of the marker which is to be filled and then refilling is done. The processes like capping and uncapping of the cap as well as screwing and unscrewing of the tip are done with the help of robotic arm and gripper. We make use of pneumatics in this system in order to get the precision while performing the capping, screwing, and refilling operations. Thus with the help of this system we can achieve cleanliness, accuracy, effective and time saving in the process of filling a marker.Keywords: automated system, market filling, information technology, control and automation
Procedia PDF Downloads 498998 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 79997 Trauma inside and Out: A Descriptive Cross-Sectional Study of Family, Community and Psychological Wellbeing amongst Pediatric Victims of Interpersonal Violence
Authors: Mary Bernardin, Margie Batek, Joseph Moen, David Schnadower
Abstract:
Background: Exposure to violence not only has negative psychological impact on children but is a risk factor for children becoming recurrent victims of violence. However, little is known regarding the degree to which child victims of violence are exposed to trauma at home and in their community, or its association with specific psychological diagnoses. Objective: The aims of this study were to perform in-depth characterizations of family, community and psychological wellness amongst pediatric victims of interpersonal violence. Methods: As standard of care at the Saint Louis Children’s Hospital pediatric emergency department (ED), social workers perform in-depth interviews with all children presenting due to violent interpersonal encounters. In this retrospective cross-sectional study, we collected data from social work interviews on family structure, exposure to violence in the community and the home, as well as history of psychological diagnoses amongst children ages 8-19 years who presented to the ED for injuries related to interpersonal violence from 2014-2017. Results: A total of 407 patients presenting to the ED for an interpersonal violent encounter were analyzed. The average age of studied youths was 14.7 years (SD 2.5). Youths were 97.5% African American ethnicity and 66.6% male. 67.8% described their home having a nonnuclear family structure, 50% of which reported living with a single mother. Of the 21% who reported having incarcerated family members, 56.3% reported their father being incarcerated, 15% reported their mother being incarcerated, and 12.5% reported multiple family members being incarcerated. 11.3% reported witnessing domestic violence in their home. 12.8% of youths reported some form of child abuse. The type of child abuse was not specified in 29.3% of cases, but physical abuse (32.8%) followed by sexual abuse (22.4%) were the most commonly reported. 14.5% had history of placement in foster care and/or adoption. 64% reported having witnessed violence in their community. 30.2% reported having lost friends or family due to violence, and of those, 26.4% reported the loss of a cousin, 18.9% the loss of a friend, 16% the loss of their father, and 12.3% the loss of their brother due to violence. Of the 22.4% youths with psychiatric diagnose(s), 48.4% had multiple diagnoses, the most common of which were ADD/ADHD (62.6%), followed by depression (31.9%), bipolar disorder (27.5%) and anxiety (15.4%). Conclusions: A remarkable proportion of children presenting to EDs due to interpersonal violence have a history of exposure to instability and violence in their homes and communities. Additionally, psychological diagnoses are frequent among pediatric victims of violence. More research is needed to better understand the association between trauma exposure, psychological health and violent victimization amongst children.Keywords: community violence, emergency department, pediatric interpersonal violence, pediatric trauma, psychological effects of trauma
Procedia PDF Downloads 236996 Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS
Authors: Aniruddha Joshi
Abstract:
This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output.Keywords: automated sand casting production system, simulation, WITNESS software, performance evaluation
Procedia PDF Downloads 789995 Diaper Dermatitis and Pancytopenia as the Primary Manifestation in an Infant with Vitamin B12 Deficiency
Authors: Ekaterina Sánchez Romero, Emily Gabriela Aguirre Herrera, Sandra Luz Espinoza Esquerra, Jorge García Campos
Abstract:
Female, 7 months old, daughter of a mother with anemia during pregnancy, with no history of atopy in the family, since birth she presents with recurrent dermatological and gastrointestinal infections, chronically treated for recurrent diaper dermatitis. At 6 months of age, she begins with generalized pallor, hyperpigmentation in hands and feet, smooth tongue, psychomotor retardation with lack of head support, sedation, and hypoactivity. She was referred to our hospital for a fever of 38°C, severe diaper rash, and pancytopenia with HB 9.3, platelets 38000, neutrophils 0.39 MCV: 86.80 high for her age. The approach was initiated to rule out myeloproliferative syndrome, with negative immunohistochemical results of bone marrow aspirate; during her stay, she presented neurological regression, lack of sucking, and focal seizures. CT scan showed cortical atrophy. The patient was diagnosed with primary immunodeficiency due to history; gamma globulin was administered without improvement with normal results of immunoglobulins and metabolic screening. When dermatological and neurological diagnoses were ruled out as the primary cause, a nutritional factor was evaluated, and a therapeutic trial was started with the administration of vitamin B12 and zinc, presenting clinical neurological improvement and resolution of pancytopenia in 2 months. It was decided to continue outpatient management. Discussion: We present a patient with neurological, dermatological involvement, and pancytopenia, so the most common differential diagnoses in this population were ruled out. Vitamin B12 deficiency is an uncommon entity. Due to maternal and clinical history, a therapeutic trial was started resulting in an improvement. Conclusion: VitaminB12 deficiency should be considered one of the differential diagnoses in the approach to pancytopenia with megaloblastic anemia associated with dermatologic and neurologic manifestations. Early treatment can reduce irreversible damage in these patients.Keywords: vitamin B12 deficiency, pediatrics, pancytopenia, diaper dermatitis
Procedia PDF Downloads 98994 The Impact of Automation on Supply Chain Management in West Africa
Authors: Nwauzoma Ohale Rowland, Bright Ugochukwu Umunna
Abstract:
The world has been referred to as a global village for decades, adapting various technological and digital innovations to progress along the lines of development. Different continents have fully automated processes and procedures in the various sectors of their economies. This paper attempts to ascertain why the West African sub-continent while displaying a slow progression, has also joined the race toward having a fully automated process, albeit only in certain areas of its economy. Different reasons for this have been posited and will be discussed in this work. These reasons include high illiteracy rates and poor acceptance of new technologies. Studies were carried out that involved interactions with different business sectors and also a secondary-level investigation of experiments to ascertain the impact of automation in supply chain management on the West African market. Our reports show remarkable growth in businesses and sectors that have automated their processes. While this is the case, other results have also confirmed as due to the high illiteracy rates; the labour force has also been affected.Keywords: Africa, automation, business, innovation, supply chain management, technology
Procedia PDF Downloads 106993 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 224992 Comparative Analysis of Automation Testing Tools
Authors: Amit Bhanushali
Abstract:
In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository
Procedia PDF Downloads 98991 Automated CNC Part Programming and Process Planning for Turned Components
Authors: Radhey Sham Rajoria
Abstract:
Pressure to increase the competitiveness in the manufacturing sector and for the survival in the market has led to the development of machining centres, which enhance productivity, improve quality, shorten the lead time, and reduce the manufacturing cost. With the innovation of machining centres in the manufacturing sector the production lines have been replaced by these machining centers, having the ability to machine various processes and multiple tooling with automatic tool changer (ATC) for the same part. Also the process plans can be easily generated for complex components. Some means are required to utilize the machining center at its best. The present work is concentrated on the automated part program generation, and in turn automated process plan generation for the turned components on Denford “MIRAC” 8 stations ATC lathe machining centre. A package in C++ on DOS platform is developed which generates the complete CNC part program, process plan and process sequence for the turned components. The input to this system is in the form of a blueprint in graphical format with machining parameters and variables, and the output is the CNC part program which is stored in a .mir file, ready for execution on the machining centre.Keywords: CNC, MIRAC, ATC, process planning
Procedia PDF Downloads 269990 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 211989 Reaching the Goals of Routine HIV Screening Programs: Quantifying and Implementing an Effective HIV Screening System in Northern Nigeria Facilities Based on Optimal Volume Analysis
Authors: Folajinmi Oluwasina, Towolawi Adetayo, Kate Ssamula, Penninah Iutung, Daniel Reijer
Abstract:
Objective: Routine HIV screening has been promoted as an essential component of efforts to reduce incidence, morbidity, and mortality. The objectives of this study were to identify the optimal annual volume needed to realize the public health goals of HIV screening in the AIDS Healthcare Foundation supported hospitals and establish an implementation process to realize that optimal annual volume. Methods: Starting in 2011 a program was established to routinize HIV screening within communities and government hospitals. In 2016 Five-years of HIV screening data were reviewed to identify the optimal annual proportions of age-eligible patients screened to realize the public health goals of reducing new diagnoses and ending late-stage diagnosis (tracked as concurrent HIV/AIDS diagnosis). Analysis demonstrated that rates of new diagnoses level off when 42% of age-eligible patients were screened, providing a baseline for routine screening efforts; and concurrent HIV/AIDS diagnoses reached statistical zero at screening rates of 70%. Annual facility based targets were re-structured to meet these new target volumes. Restructuring efforts focused on right-sizing HIV screening programs to align and transition programs to integrated HIV screening within standard medical care and treatment. Results: Over one million patients were screened for HIV during the five years; 16, 033 new HIV diagnoses and access to care and treatment made successfully for 82 % (13,206), and concurrent diagnosis rates went from 32.26% to 25.27%. While screening rates increased by 104.7% over the 5-years, volume analysis demonstrated that rates need to further increase by 62.52% to reach desired 20% baseline and more than double to reach optimal annual screening volume. In 2011 facility targets for HIV screening were increased to reflect volume analysis, and in that third year, 12 of the 19 facilities reached or exceeded new baseline targets. Conclusions and Recommendation: Quantifying targets against routine HIV screening goals identified optimal annual screening volume and allowed facilities to scale their program size and allocate resources accordingly. The program transitioned from utilizing non-evidence based annual volume increases to establishing annual targets based on optimal volume analysis. This has allowed efforts to be evaluated on the ability to realize quantified goals related to the public health value of HIV screening. Optimal volume analysis helps to determine the size of an HIV screening program. It is a public health tool, not a tool to determine if an individual patient should receive screening.Keywords: HIV screening, optimal volume, HIV diagnosis, routine
Procedia PDF Downloads 263988 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 105987 A Mechanism of Reusable, Portable, and Reliable Script Generator on Android
Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu
Abstract:
A good automated testing tool could reduce as much as possible the manual work done by testers. Traditional record-replay testing tool provides an automated testing solution by recording mouse coordinates as test scripts, but it will be easily broken if any change of resolutions. Therefore, more and more testers design multiple test scripts to automate the testing process for different devices. In order to improve the traditional record-replay approach and reduce the effort that the testers spending on writing test scripts, we propose an approach for generating the Android application test scripts based on accessibility service without connecting to a computer. This approach simulates user input actions and replays them correctly even at the different conditions such as the internet connection is unstable when the device under test, the different resolutions on Android devices. In this paper, we describe how to generate test scripts automatically and make a comparison with existing tools for Android such as Robotium, Appium, UIAutomator, and MonkeyTalk.Keywords: accessibility service, Appium, automated testing, MonkeyTalk, Robotium, testing, UIAutomator
Procedia PDF Downloads 378986 Intelligent Quality Management System on the Example оf Bread Baking
Authors: Irbulat Utepbergenov, Lyazzat Issabekova, Shara Toybayeva
Abstract:
This article discusses quality management using the bread baking process as an example. The baking process must be strictly controlled and repeatable. Automation and monitoring of quality management systems can help. After baking bread, quality control of the finished product should be carried out. This may include an evaluation of appearance, weight, texture, and flavor. It is important to continuously work to improve processes and products based on data and feedback from the quality management system. A method and model of automated quality management and an intelligent automated management system based on intelligent technologies are proposed, which allow to automate the processes of QMS implementation and support and improve the validity, efficiency, and effectiveness of management decisions by automating a number of functions of decision makers and staff. This project is supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan (Zhas Galym project No. AR 13268939 Research and development of digital technologies to ensure consistency of the carriers of normative documents of the quality management system).Keywords: automated control system, quality management, efficiency evaluation, bakery oven, intelligent system
Procedia PDF Downloads 39985 Development of Fire Douse Vehicle
Authors: Nikhil Verma, Akshay Kant Mishra, Rishabh Rastogi, Bikarama Prasad Yadav
Abstract:
Emerging fire incidents are the protuberant contributor out turning into life loss, property damage and importantly firefighters. It insinuates that a firefighting and rescue operation of the existing equipment or apparatus and their proficiency is limited, particularly in annihilating firefighting environments. The proposed methodology will help in developing a technology which can be useful in minimizing the risks and losses due to fire. In this paper, design and development of combat mini vehicle comprising of multi-purpose nozzle system is proposed which can target diverse fires simultaneously at distinct time and location. Basically, the system is semi-automated type protection system which can be manoeuvred by controller. Designing of robust vehicle based on semi-automated protection type system is consummated using SolidWorks platform. Concept of developing a robust vehicle will help to fight fires in multiple directions reducing the time required to douse multiple fires.Keywords: fire douse vehicle, multiple fires, multi-purpose nozzle, semi-automated system
Procedia PDF Downloads 130984 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C
Authors: Keaghan Brown
Abstract:
The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase
Procedia PDF Downloads 77983 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 184982 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 57981 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 82980 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 408979 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany
Authors: Dustin Schöder
Abstract:
The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization
Procedia PDF Downloads 79978 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 185977 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 357976 A Simplified Model of the Control System with PFM
Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova
Abstract:
This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model
Procedia PDF Downloads 375975 Manual to Automated Testing: An Effort-Based Approach for Determining the Priority of Software Test Automation
Authors: Peter Sabev, Katalina Grigorova
Abstract:
Test automation allows performing difficult and time consuming manual software testing tasks efficiently, quickly and repeatedly. However, development and maintenance of automated tests is expensive, so it needs a proper prioritization what to automate first. This paper describes a simple yet efficient approach for such prioritization of test cases based on the effort needed for both manual execution and software test automation. The suggested approach is very flexible because it allows working with a variety of assessment methods, and adding or removing new candidates at any time. The theoretical ideas presented in this article have been successfully applied in real world situations in several software companies by the authors and their colleagues including testing of real estate websites, cryptographic and authentication solutions, OSGi-based middleware framework that has been applied in various systems for smart homes, connected cars, production plants, sensors, home appliances, car head units and engine control units (ECU), vending machines, medical devices, industry equipment and other devices that either contain or are connected to an embedded service gateway.Keywords: automated testing, manual testing, test automation, software testing, test prioritization
Procedia PDF Downloads 335974 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels
Authors: Dovile Petkeviciute-Barysiene
Abstract:
Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).Keywords: automation levels, information processing, legal judgment and decision making, legal technology
Procedia PDF Downloads 143973 Retrospective Study for Elective Medical Patients Evacuation of Different Diagnoses Requiring Different Approach in Oxygen Usage
Authors: Branimir Skoric
Abstract:
Over the past two decades, number of international travels rose significantly in the United Kingdom and Worldwide in the shape of business travels and holiday travels as well. The fact that elderly people travel a lot, more than ever before increased the needs for medical evacuations (repatriations) back home if they fell ill abroad or had any kind of accident. This paper concerns medical evacuations of patients on the way back home to the United Kingdom (United Kingdom Residents) and their specific medical needs during short-haul or long-haul commercial scheduled flight and ground transportation to the final destination regardless whether it was hospital or usual place of residence. Particular medical need during medical evacuations is oxygen supply and it can be supplied via portable oxygen concentrator, pulse flow oxygenator or continuous free flow oxygenator depending on the main diagnosis and patient’s comorbidities. In this retrospective study, patients were divided into two groups. One group was consisted of patients suffering from cardio-respiratory diagnoses as primary illness. Another Group consisted of patients suffering from noncardiac illnesses who have other problems including any kind of physical injury. Needs for oxygen and type of supply were carefully considered in regards of duration of the flight, standard airline cabin pressure and results described in this retrospective study.Keywords: commercial flight, elderly travellers, medical evacuations, oxygen
Procedia PDF Downloads 145972 Automation of Student Attendance Management System Using BPM
Authors: Kh. Alaa, Sh. Sarah, J. Khowlah, S. Liyakathunsia
Abstract:
Education has become very important nowadays and with the rapidly increasing number of student, taking the attendance manually is getting very difficult and time wasting. In order to solve this problem, an automated solution is required. An effective automated system can be implemented to manage student attendance in different ways. This research will discuss a unique class attendance system which integrates both Face Recognition and RFID technique. This system focuses on reducing the time spent on submitting of the lecture and the wastage of time on submitting and getting approval for the absence excuse and sick leaves. As a result, the suggested solution will enhance not only the time, also it will also be helpful in eliminating fake attendance.Keywords: attendance system, face recognition, RFID, process model, cost, time
Procedia PDF Downloads 376