Search results for: TGF-β receptor
441 Antidepressant-Like Effects of EQC-34, a 5HT3 Receptor Antagonist in Neurobehavioral Mouse Model of Depression
Authors: D: Gupta, M. Radhakrishnan, Y. Kurhe, D. Thangaraj
Abstract:
Depression is among the leading causes of death worldwide. The current pharmacotherapy is associated with poor compliance, resistance and relapse, which necessitate the development of novel compounds with better efficacy. The present study designed and synthesized EQC-34 (N-cyclohexyl-3-ethoxyquinoxalin-2-carboxamide) as novel serotonin type-3 (5HT3) antagonist and evaluated its antidepressant-like effects using neurobehavioral mouse model. 5HT3 antagonism (as pA2 value) was determined on the longitudinal smooth muscle of guinea-pig ileum against 2-methyl-5HT (a 5HT3 agonist). The doses were calculated by dose response of basal locomotor activity. Consequently, effects of EQC-34 on neurobehavioral parameters were measured in forced swim (FST) and tail suspension test (TST). The possible mechanism was estimated by interaction study with fluoxetine (a selective serotonin reuptake inhibitor) and mCPBG (1-(m-chlorophenyl)-biguanide, a selective 5HT3 agonist), and confirmed by potentiation of head twitch response by 5hydroxy-L-tryptophan (5HTP). EQC-34 (1-4 mg/kg, i.p.) produced significant decreased behavioral despair effects in FST and TST. It potentiated fluoxetine response, while mCPBG reduced EQC-34 activity in FST. Further, EQC-34 potentiated 5HTP induced head twitch response. EQC-34 revealed potential antidepressant-like effects, which may involve 5HT3 receptor mediated facilitation of 5HT neurotransmission, thereby reversing the pathological deficiency of monoamines (5HT) observed in depression. Thus, it may be further investigated as promising agent to improve therapeutics of depression.Keywords: depression, forced swim test, 5HT3 receptor antagonist, serotonin
Procedia PDF Downloads 433440 Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis
Authors: Junaid Jibran Jawed, Prasanta Saini, Subrata Majumdar
Abstract:
Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target.Keywords: Ara-LAM (Arabinoacylated Lipoarabinomannan), NOD2 (nucleotide binding oligomerization receptor 2), MDP (muramyl di peptide), visceral Leishmaniasis
Procedia PDF Downloads 175439 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, some Blood Parameters and Hatchability in Breeding Japanese Quail
Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat
Abstract:
In this study, in the breeding Japanese quails (coturnix coturnix japonica), it was aimed to study the effects of cellular insulin receptor stimulation on the performance, some blood parameters, and hatchability features. In the study, a total of 84 breeding quails were used, which are in 6 weeks age, and whose 24 are male and 60 female. In the trial, rations which contain 2900 kcal/kg metabolic energy; crude protein of 20%, and water whose pH is calibrated to 7.45 were administered as ad-libitum, to the animals, as metformin source, metformin-HCl was used and as chrome resource, Chromium Picolinate. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of fodder of 20 mg/kg), and chromium picolinate group (basal ration, added fodder of 1500 ppb Cr. When regarded to the results of performance at the end of trial, it is seen that live weight gain, fodder consumption, egg weight, fodder evaluation coefficient, and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features at the end of trial, it was identified that incubation yield and hatchability are not affected by the treatments but in the groups, in which metformin and chromium picolinate are added to ration, that fertility rose at the significant level compared to control group (p < 0,05). According to the results of blood parameters and hormone at the end of the trial, while the level of plasma glucose level was not affected by treatments (p > 0.05), with the addition of metformin and chromium picolinate to ration, plasma, total control, cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p<0,05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0,05).Keywords: cholesterol, chromium picolinate, hormone, metformin, performance, quail
Procedia PDF Downloads 206438 Mechanisms of O-1602 Induced Endothelium-Independent Vasorelaxation of Rat Small Mesenteric Artery
Authors: Yousuf Al Suleimani, Ahmed Al Mahruqi
Abstract:
A typical cannabinoid O-1602 induces vasorelaxation and activates the orphan G protein-coupled receptor GPR55 in human endothelial cells. The aim of this study is to characterize the mechanisms of endothelium-independent relaxation of O-1602 in the rat small mesenteric artery using wire myograph. In endothelium-denuded vessels, O-1602 partially produced concentration-dependent vasorelaxation. In vessels depleted of intracellular Ca2+ (by EGTA and methoxamine), CaCl2 produced concentration-dependent contraction. Preincubation with O-1602 (at 10 µM and 30 µM) abolished the contractile responses (P<0.01). The putative antagonist at novel “endothelial anandamide receptor” O-1918 (10 µM) significantly reversed the inhibitory effect of O-1602 on CaCl2-induced vasoconstriction. It is likely that the mechanism of endothelium-independent vasorelaxation to O-1602 is mediated by interfering with Ca2+ entry via an O-1918-sensitive pathway.Keywords: O-1602, endothelium, vasorelaxation, calcium
Procedia PDF Downloads 359437 Adrenergic and Non-Adrenergic Control of Mesenteric Blood Vessels of Calves
Authors: A. Elmajdoub, A. El-Mahmoudy
Abstract:
The present study was designed to investigate the neurotransmitters that mediate the excitatory response of the circular muscle of final branches of mesenteric artery in bovine calves. Mesentery was dissected and the iliac branches were separated and used. The final mesenteric branches of diameter 400 micrometers and less responded strongly to norepinephrine and moderately to ATP. However, the mesenteric branches of wider diameters were gradually less responsive to norepinephrine and those of diameter 700 micrometers were exclusively nonresponsive. These arteries were strongly responsive to ATP (100 µM). Norepinephrine response was sensitive to phentolamine (3 µM) and prazosin (5 µM) indicating that it is mediated by α1 receptor; while ATP response was sensitive to suramin (200 µM), PPADS (50 µM), but not to cibacron blue (100 µM) indicating that it is mediated via P2X receptor. Further confirmatory experiments were performed including application of α1 and P2X receptor specific agonists which are methoxamine and α,β-methylene ATP. Methoxamine (1 µM) showed effects similar to norepinephrine in final branches and was without effect in wider branches. α,β-methylene ATP (1 µM), exhibited more pronounced effects on both wide and narrow branches but in parallel manner to that of ATP. Agonists for α2 and P2Y receptors as clonidine (10 µM) and 2-meThio ATP (10 µM), respectively, were without effect indicating that involvement of these receptors is unlikely. The neuropeptide-Y (200 nM) did not have any effects on either the narrow or the wide rings. Conclusion: These data may imply that in the most peripheral mesenteric arteries a strong vasopressor power represented by norepinephrine and ATP integration is needed for maintaining peripheral resistance; on the other hand a mild vasopressor power mediated only by ATP is enough to maintain the vascular tone in the relatively central mesenteric branches.Keywords: ATP, calves, mesenteric artery, norepinephrine
Procedia PDF Downloads 305436 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone
Procedia PDF Downloads 143435 The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete
Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan
Abstract:
Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.Keywords: addiction, athletic performance, genotype, sport genetics
Procedia PDF Downloads 213434 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
Authors: Mahya Naghipoor
Abstract:
Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.Keywords: lung cancer, radiomics, computer tomography, mutation
Procedia PDF Downloads 167433 The 5-HT1A Receptor Biased Agonists, NLX-101 and NLX-204, Elicit Rapid-Acting Antidepressant Activity in Rat Similar to Ketamine and via GABAergic Mechanisms
Authors: A. Newman-Tancredi, R. Depoortère, P. Gruca, E. Litwa, M. Lason, M. Papp
Abstract:
The N-methyl-D-aspartic acid (NMDA) receptor antagonist, ketamine, can elicit rapid-acting antidepressant (RAAD) effects in treatment-resistant patients, but it requires parenteral co-administration with a classical antidepressant under medical supervision. In addition, ketamine can also produce serious side effects that limit its long-term use, and there is much interest in identifying RAADs based on ketamine’s mechanism of action but with safer profiles. Ketamine elicits GABAergic interneuron inhibition, glutamatergic neuron stimulation, and, notably, activation of serotonin 5-HT1A receptors in the prefrontal cortex (PFC). Direct activation of the latter receptor subpopulation with selective ‘biased agonists’ may therefore be a promising strategy to identify novel RAADs and, consistent with this hypothesis, the prototypical cortical biased agonist, NLX-101, exhibited robust RAAD-like activity in the chronic mild stress model of depression (CMS). The present study compared the effects of a novel, selective 5-HT1A receptor-biased agonist, NLX-204, with those of ketamine and NLX-101. Materials and methods: CMS procedure was conducted on Wistar rats; drugs were administered either intraperitoneally (i.p.) or by bilateral intracortical microinjection. Ketamine: 10 mg/kg i.p. or 10 µg/side in PFC; NLX-204 and NLX-101: 0.08 and 0.16 mg/kg i.p. or 16 µg/side in PFC. In addition, interaction studies were carried out with systemic NLX-204 or NLX-101 (each at 0.16 mg/kg i.p.) in combination with intracortical WAY-100635 (selective 5-HT1A receptor antagonist; 2 µg/side) or muscimol (GABA-A receptor agonist, 12.5 ng/side). Anhedonia was assessed by CMS-induced decrease in sucrose solution consumption; anxiety-like behavior was assessed using the Elevated Plus Maze (EPM), and cognitive impairment was assessed by the Novel Object Recognition (NOR) test. Results: A single administration of NLX-204 was sufficient to reverse the CMS-induced deficit in sucrose consumption, similarly to ketamine and NLX-101. NLX-204 also reduced CMS-induced anxiety in the EPM and abolished CMS-induced NOR deficits. These effects were maintained (EPM and NOR) or enhanced (sucrose consumption) over a subsequent 2-week period of treatment. The anti-anhedonic response of the drugs was also maintained for several weeks Following treatment discontinuation, suggesting that they had sustained effects on neuronal networks. A single PFC administration of NLX-204 reversed deficient sucrose consumption, similarly to ketamine and NLX-101. Moreover, the anti-anhedonic activities of systemic NLX-204 and NLX 101 were abolished by coadministration with intracortical WAY-100635 or muscimol. Conclusions: (i) The antidepressant-like activity of NLX-204 in the rat CMS model was as rapid as that of ketamine or NLX-101, supporting targeting cortical 5-HT1A receptors with selective, biased agonists to achieve RAAD effects. (ii)The anti-anhedonic activity of systemic NLX-204 was mimicked by local administration of the compound in the PFC, confirming the involvement of cortical circuits in its RAAD-like effects. (iii) Notably, the effects of systemic NLX-204 and NLX-101 were abolished by PFC administration of muscimol, indicating that they act by (indirectly) eliciting a reduction in cortical GABAergic neurotransmission. This is consistent with ketamine’s mechanism of action and suggests that there are converging NMDA and 5-HT1A receptor signaling cascades in PFC underlying the RAAD-like activities of ketamine and NLX-204. Acknowledgements: The study was financially supported by NCN grant no. 2019/35/B/NZ7/00787.Keywords: depression, ketamine, serotonin, 5-HT1A receptor, chronic mild stress
Procedia PDF Downloads 112432 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models
Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla
Abstract:
Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory
Procedia PDF Downloads 340431 Obesity, Leptin Levels and Leptin Receptor Gene Polymorphisms in Afro-Caribbean Subjects
Authors: Lydia Foucan, Christine Rambhojan, Rachel Billy, Christophe Armand, Carl-Thony Michel, Jean-Marc Lacorte, Laurent Larifla
Abstract:
Leptin, an adipocyte-derived hormone, modulates insulin secretion and action via the leptin receptor (LEPR) that is expressed in pancreatic beta cells, adipose tissue, and muscle. Several polymorphisms have been described in the human LEPR gene including p.K109R (rs1137100), p.Q223R (rs1137101) and p.K656N (rs1805094) polymorphisms. The role of these polymorphisms is not yet studied in Guadeloupian population. Our aim was to explore the association of LEPR polymorphisms (K109R, Q223R and K656N) with leptin levels and obesity in non-diabetic Afro-Caribbean subjects. Genotypic analysis of the three polymorphisms was performed in 425 subjects using TaqMan and KASPar Assays. Serum leptin was measured with ELISA kits Biovendor® (RD191001100). Logistic regressions were used for assessment of statistical associations. Mean age was 47.6 ± 12.7 years. Among the participants, 238 (56 %) were women, 124 (30%) were obese and 155 (36.5%) had abdominal obesity. Carriers of LEPR K656N rs1805094 rare allele had significant higher frequencies of obesity (P = 0.007), abdominal obesity (P = 0.004) and metabolic syndrome (P = 0.021) but mean leptin level was not significantly different between both groups (P = 0.075). Odds ratios, adjusted for age and sex associated with presence of rs1805094 rare allele were 1.8 (1.1-2.9), P = 0.012 for obesity, 2.0 (1.2-3.3), P = 0.008 for abdominal obesity and 1.8 (1.1-3.0), P = 0.031 for MetS. No significant association was found with K109R, Q223R. These findings suggest that the K656N polymorphism (but not the K109R or Q223R polymorphism) of LEPR is associated with obesity, abdominal obesity and metabolic syndrome in this Afro-Caribbean non-diabetic population.Keywords: Afro-Caribbean, leptin levels, leptin receptor gene polymorphisms, obesity
Procedia PDF Downloads 377430 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function
Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen
Abstract:
This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance
Procedia PDF Downloads 287429 Comparative Efficacy of Angiotensin Converting Enzymes Inhibitors and Angiotensin Receptor Blockers in Patients with Heart Failure in Tanzania: A Prospective Cohort Study
Authors: Mark P. Mayala, Henry Mayala, Khuzeima Khanbhai
Abstract:
Background: Heart failure has been a rising concern in Tanzania. New drugs have been introduced, including the group of drugs called Angiotensin receptor Neprilysin Inhibitor (ARNI), but due to their high cost, angiotensin-converting enzymes inhibitors (ACEIs) and Angiotensin receptor blockers (ARBs) have been mostly used in Tanzania. However, according to our knowledge, the efficacy comparison of the two groups is yet to be studied in Tanzania. The aim of this study was to compare the efficacy of ACEIs and ARBs among patients with heart failure. Methodology: This was a hospital-based prospective cohort study done at Jakaya Kikwete Cardiac Institution (JKCI), Tanzania, from June to December 2020. Consecutive enrollment was done until fulfilling the inclusion criteria. Clinical details were measured at baseline. We assessed the relationship between ARBs and ACEIs users with N-terminal pro-brain natriuretic peptide (NT pro-BNP) levels at admission and at 1-month follow-up using a chi-square test. A Kaplan-Meier curve was used to estimate the survival time of the two groups. Results: 155 HF patients were enrolled, with a mean age of 48 years, whereby 52.3% were male, and their mean left ventricular ejection fraction (LVEF) was 37.3%. 52 (33.5%) heart failure patients were on ACEIs, 57 (36.8%) on ARBs, and 46 (29.7%) were neither using ACEIs nor ARBs. At least half of the patients did not receive a guideline-directed medical therapy (GDMT), with only 82 (52.9%) receiving a GDMT. A drop in NT pro-BNP levels was observed during admission and at 1-month follow-up on both groups, from 6389.2 pg/ml to 4000.1 pg/ml for ARB users and 5877.7 pg/ml to 1328.2 pg/ml for the ACEIs users. There was no statistical difference between the two groups when estimated by the Kaplan-Meier curve, though more deaths were observed in those who were neither on ACEIs nor ARBs, with a calculated P value of 0.01. Conclusion: This study demonstrates that ACEIs have more efficacy and overall better clinical outcome than ARBs, but this should be taken under the patient-based case, considering the side effects of ACEIs and patients’ adherence.Keywords: angiotensin converting enzymes inhibitors, angiotensin receptor blockers, guideline direct medical therapy, N-terminal pro-brain natriuretic peptide
Procedia PDF Downloads 85428 Characterization of Calcium-Signalling Mediated by Human GPR55 Expressed in HEK293 Cells
Authors: Yousuf M. Al Suleimani, Robin Hiley
Abstract:
The endogenous phospholipid lysophosphatidylinositol (LPI) was recently identified as a novel ligand for the G protein-coupled receptor 55 (GPR55) and an inducer of intracellular Ca2+ [Ca2+]i release. This study attempts to characterize Ca2+ signals provoked by LPI in HEK293 cells engineered to stably express human GPR55 and to test cannabinoid ligand activity at GPR55. The study shows that treatment with LPI stimulates a sustained, oscillatory Ca2+ release. The response is characterized by an initial rapid rise, which is mediated by the Gαq-PLC-IP3 pathway, and this is followed by prolonged oscillations that require RhoA activation. Ca2+ oscillations are initiated by intracellular mechanisms and extracellular Ca2+ is only required to replenish Ca2+ lost from the cytoplasm. Analysis of cannabinoid ligand activity at GPR55 revealed no clear effect of the endocannabinoid anandamide, however, rimonabant and the CB1 receptor antagonist AM251 evoked GPR55-mediated [Ca2+]i. Thus, LPI is likely to be a key plasma membrane mediator of signaling events and changes in gene expression through GPR55 activation.Keywords: lysophosphatidylinositol, calcium, GPR55, cannabinoid
Procedia PDF Downloads 358427 Genetic Polymorphism in the Vitamin D Receptor Gene and 25-Hydroxyvitamin D Serum Levels in East Indian Women with Polycystic Ovary Syndrome
Authors: Dipanshu Sur, Ratnabali Chakravorty
Abstract:
Background: Polycystic ovary syndrome (PCOS) is the most common metabolic abnormality such as changes in lipid profile, diabetes, hypertension and metabolic syndrome occurring in young women of reproductive age. Low vitamin D levels were found to be associated with the development of obesity and insulin resistance in women with PCOS. Variants on vitamin D receptor (VDR) gene have also been related to metabolic comorbidities in general population. Aim: The aim of this case-control study was to investigate whether the VDR gene polymorphisms are associated with susceptibility to PCOS. Methods: Women with PCOS and a control group, all aged 16-40 years, were enrolled. Genotyping of VDR Fok-I (rs2228570), VDR Apa-I (rs7975232) as well as GC (rs2282679), DHCR7 (rs12785878) SNPs between groups were determined by using direct sequencing. Serum 25-hydroxyvitamin D [25(OH)] levels were measured by ELISA. Results: Mean serum 25(OH)D in the PCOS and control samples were 19.08±7 and 23.27±6.03 (p=0.048) which were significantly lower in PCOS patients compared with controls. CC genotype of the VDR Apa-I SNP was same frequent in PCOS (25.6%) and controls (25.6%) (OR: 0.9995; 95%CI: 0.528 to 1.8921; p= 0.9987). The CC genotype was also significantly associated with both lower E2 (p=0.031) and Androstenedione levels (p=0.062). We observed a significant association of GC polymorphism with 25(OH)D levels. PCOS women carrying the GG genotype (in GC genes) had significantly higher risk for vitamin D deficiency than women carrying the TT genotype. Conclusions: In conclusion, data from this study indicate that vitamin D levels are lower, and vitamin D deficiency more frequent, in PCOS than in controls. The present findings suggest that the Apa-I, Fok-I polymorphism of the VDR gene is associated with PCOS and seems to modulate ovarian steroid secretion. Further studies are needed to better clarify the biological mechanisms by which the polymorphism influences PCOS risk.Keywords: vitamin D receptor, polymorphism, vitamin D, polycystic ovary syndrome
Procedia PDF Downloads 304426 Effects of Intracerebroventricular Injection of Spexin and Its Interaction with Nitric Oxide, Serotonin, and Corticotropin Receptors on Central Food Intake Regulation in Chicken
Authors: Mohaya Farzin, Shahin Hassanpour, Morteza Zendehdel, Bita Vazir, Ahmad Asghari
Abstract:
Aim: There are several differences between birds and mammals in terms of food intake regulation. Therefore, this study aimed to investigate the effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin, and corticotropin receptors on central food intake regulation in broiler chickens. Materials and Methods: In experiment 1, chickens received ICV injection of saline, PCPA (p-chlorophenyl alanine,1.25 µg), spexin, and PCPA+spexin. In experiments 2-7, 8-OH-DPAT (5-HT1A agonist, 15.25 nmol), SB-242084 (5-HT2C receptor antagonist, 1.5µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetase inhibitor, 100 nmol), Astressin-B (CRF1/CRF2 receptor antagonist, 30 µg) and Astressin2-B (CRF2 receptor antagonist, 30 µg) were injected to chickens instead of the PCPA. Then, food intake was measured until 120 minutes after the injection. Results: Spexin significantly decreased food consumption (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia, and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Conclusions: Based on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broiler chickens.Keywords: spexin, serotonin, corticotropin, nitric oxide, food intake, chicken
Procedia PDF Downloads 74425 Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice
Authors: Jun Yang, Ching-Liang Hsieh, Yi-Wen Lin
Abstract:
Chronic inflammatory pain results from peripheral tissue injury or local inflammation to increase the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines. Transient receptor potential vanilloid 1 (TRPV1) is involved in fibromyalgia, neuropathic, and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are still unclear. We investigate the analgesic effect of EA by injecting complete Freund’s adjuvant (CFA) in the hind paw of mice to induce chronic inflammatory pain ( > 14 d). Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia was also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG) and spinal cord (SC) at 2 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were involved in this process. Inflammatory mediators such as GFAP (Glial fibrillary acidic protein), S100B, and RAGE (Receptor for advanced glycation endproducts) were also involved. The expression levels of these molecules were reduced in EA (electroacupuncture) and TRPV1−/−mice but not in the sham EA group. The present study demonstrated that EA or TRPV1 gene deletion reduced chronic inflammatory pain through TRPV1 and related molecules. In addition, our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation, electroacupuncture
Procedia PDF Downloads 176424 Role of Estrogen Receptor-alpha in Mammary Carcinoma by Single Nucleotide Polymorphisms and Molecular Docking: An In-silico Analysis
Authors: Asif Bilal, Fouzia Tanvir, Sibtain Ahmad
Abstract:
Estrogen receptor alpha, also known as estrogen receptor-1, is highly involved in risk of mammary carcinoma. The objectives of this study were to identify non-synonymous SNPs of estrogen receptor and their association with breast cancer and to identify the chemotherapeutic responses of phytochemicals against it via in-silico study design. For this purpose, different online tools. to identify pathogenic SNPs the tools were SIFT, Polyphen, Polyphen-2, fuNTRp, SNAP2, for finding disease associated SNPs the tools SNP&GO, PhD-SNP, PredictSNP, MAPP, SNAP, MetaSNP, PANTHER, and to check protein stability Mu-Pro, I-Mutant, and CONSURF were used. Post-translational modifications (PTMs) were detected by Musitedeep, Protein secondary structure by SOPMA, protein to protein interaction by STRING, molecular docking by PyRx. Seven SNPs having rsIDs (rs760766066, rs779180038, rs956399300, rs773683317, rs397509428, rs755020320, and rs1131692059) showing mutations on I229T, R243C, Y246H, P336R, Q375H, R394S, and R394H, respectively found to be completely deleterious. The PTMs found were 96 times Glycosylation; 30 times Ubiquitination, a single time Acetylation; and no Hydroxylation and Phosphorylation were found. The protein secondary structure consisted of Alpha helix (Hh) is (28%), Extended strand (Ee) is (21%), Beta turn (Tt) is 7.89% and Random coil (Cc) is (44.11%). Protein-protein interaction analysis revealed that it has strong interaction with Myeloperoxidase, Xanthine dehydrogenase, carboxylesterase 1, Glutathione S-transferase Mu 1, and with estrogen receptors. For molecular docking we used Asiaticoside, Ilekudinuside, Robustoflavone, Irinoticane, Withanolides, and 9-amin0-5 as ligands that extract from phytochemicals and docked with this protein. We found that there was great interaction (from -8.6 to -9.7) of these ligands of phytochemicals at ESR1 wild and two mutants (I229T and R394S). It is concluded that these SNPs found in ESR1 are involved in breast cancer and given phytochemicals are highly helpful against breast cancer as chemotherapeutic agents. Further in vitro and in vivo analysis should be performed to conduct these interactions.Keywords: breast cancer, ESR1, phytochemicals, molecular docking
Procedia PDF Downloads 69423 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, Plasma Cholesterol, Glucose, Triglyceride Levels and Hatchability in Breeding Japanese Quail
Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat
Abstract:
Aim of this study is to determine the effects of cellular insulin receptor stimulators on performance, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, triiodothyronine (T3) and thyroxine (T4) hormone levels, and incubation features in the breeding Japanese quails (Coturnix japonica). In the study, a total of 84 breeding quails was used, 6 weeks’ age, 24 are male and 60, female. Rations used in experiment are 2900 kcal/kg metabolic energy and 20% crude protein. Water pH is calibrated to 7.45. Ration and water were administered ad-libitum to the animals. As metformin source, metformin-HCl was used and as chrome resource, chromium picolinate was used. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of feed of 20 mg/kg), and chromium picolinate (basal ration, added feed of 1500 ppb Cr) group. When regarded to the results of performance at the end of experiment, it is seen that live weight gain, feed consumption, egg weight, feed conversion ratio (Feed consumption/ egg weight), and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features, hatchability and hatchability of fertile egg ratio were not affected from the treatments. Fertility ratio was significantly affected by metformin and chromium picolinate treatments and fertility rose at the significant level compared to control group (p < 0.05). According to results of experiment, plasma glucose level was not affected by metformin and chromium picolinate treatments. Plasma, total cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p < 0.05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0.05).Keywords: chromium picolinate, cholesterol, hormone, metformin, quail
Procedia PDF Downloads 220422 Protective Effect of the Histamine H3 Receptor Antagonist DL77 in Behavioral Cognitive Deficits Associated with Schizophrenia
Authors: B. Sadek, N. Khan, D. Łażewska, K. Kieć-Kononowicz
Abstract:
The effects of the non-imidazole histamine H3 receptor (H3R) antagonist DL77 in passive avoidance paradigm (PAP) and novel object recognition (NOR) task in MK801-induced cognitive deficits associated with schizophrenia (CDS) in adult male rats, and applying donepezil (DOZ) as a reference drug were investigated. The results show that acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly improved MK801-induced (0.1 mg/kg, i.p.) memory deficits in PAP. The ameliorating activity of DL77 (5 mg/kg, i.p.) in MK801-induced deficits was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10 mg/kg, i.p.) or with the antimuscarinic antagonist scopolamine (SCO, 0.1 mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10 mg/kg, i.p.). Moreover, the memory enhancing effect of DL77 (5 mg/kg, i.p.) in MK801-induced memory deficits in PAP was strongly reversed when rats were pretreated with a combination of ZOL (10 mg/kg, i.p.) and SCO (1.0 mg/kg, i.p.). Furthermore, the significant ameliorative effect of DL77 (5 mg/kg, i.p.) on MK801-induced long-term memory (LTM) impairment in NOR test was comparable to the DOZ-provided memory-enhancing effect, and was abrogated when animals were pretreated with the histamine H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to provide procognitive effect on MK801-induced short-term memory (STM) impairment in NOR test. In addition, DL77 (5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with DL77 (5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or spontaneous locomotor activity. These results provide evidence for the potential of H3Rs for the treatment of neurodegenerative disorders related to impaired memory function, e.g. CDS.Keywords: histamine H3 receptor, antagonist, learning, memory impairment, passive avoidance paradigm, novel object recognition
Procedia PDF Downloads 203421 The Protective Role of Decoy Receptor 3 Analogue on Rat Steatotic Liver against Ischemia-Reperfusion Injury by Blocking M1/Th1 Polarization and Multiple Upstream Pathogenic Cascades
Authors: Tzu-Hao Li, Shie-Liang Hsieh, Han-Chieh Lin, Ying-Ying Yang
Abstract:
TNF superfamily-stimulated pathogenic cascades and macrophage (M1)/kupffer cells (KC) polarization are important in the pathogenesis of ischemia-reperfusion (IR) liver injury in animals with hepatic steatosis (HS). Decoy receptor 3 (DcR3) is a common upstream inhibitor of the above-mentioned pathogenic cascades. The study evaluated whether modulation of these DcR3-related cascades was able to protect steatotic liver from IR injury. Serum and hepatic DcR3 levels were lower in patients and animals with HS. Accordingly, the effects of pharmacologic and genetic DcR3 replacement on the IR-related pathogenic changes were measured. Significantly, DcR3 replacement protected IR-Zucker(HS) rats and IR-DcR3-Tg(HS) mice from IR liver injury. The beneficial effects of DcR3 replacement were accompanied by decreased serum/hepatic TNF, soluble TNF-like cytokine 1A (TL1A), Fas ligand (Fas-L) and LIGHT, T-helper-cell-1 cytokine (INF) levels, neutrophil infiltration, M1 polarization, neutrophil-macrophage/KC-T-cell interaction, hepatocyte apoptosis and improved hepatic microcirculatory failure among animals with IR-injured steatotic livers. Additionally, TL1A, Fas-L, LIGHT and TLR4/NFB signals were found to mediate the DcR3-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR3 was a potential agent to protect steatotic livers from IR injury by simultaneous blocking the multiple IR injury-related pathogenic changes.Keywords: Decoy 3 receptor, ischemia-reperfusion injury, M1 polarization, TNF superfamily
Procedia PDF Downloads 208420 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling
Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce
Abstract:
IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.Keywords: bone marrow macrophages, EPAC, IL-33, PGE2
Procedia PDF Downloads 186419 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19
Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao
Abstract:
COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy
Procedia PDF Downloads 187418 Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis
Authors: Liang Ning, Chung Hau Yin
Abstract:
Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future.Keywords: Laggera alata, eudesmane-type sesquiterpene, anti-angiogenesis, VEGF, angiopoietin, TIE2
Procedia PDF Downloads 210417 The Pharmacogenetics of Type 1 Cannabinoid Receptor (CB1) Gene Associated with Adverse Drug Reactions in Thai Patients
Authors: Kittitara Chunlakittiphan, Patompong Satapornpong
Abstract:
Introduction: The variation of genetics affects how our body responds to pharmaceuticals elucidates the correlation between long-term use of medical cannabis and adverse drug reactions (ADRs). Medical cannabis is regarded as the treatment for chronic pain, cancer pain, acute pain, psychological disorders, multiple sclerosis and migraine management. However, previous studies have shown that delta-9-Tetrahydrocannabinol (THC), an ingredient found in cannabis, was the cause of ADRs in CB1 receptors found in humans. Previous research suggests that distributions of the cannabinoid type 1 (CB1) receptor gene and pharmacogenetic markers, which vary amongst different populations, might affect incidences of ADRs. Although there is an evident need to investigate the level of the CB1 receptor gene (rs806365), studies on the distribution of CB1-pharmacogenetics markers in Thai patients are limited. Objective: Therefore, the aim of this study is to investigate the distribution of the rs806365 polymorphism in Thai patients who have been treated with medical cannabis. Materials and Methods: We enrolled 31 Thai patients with THC-induced ADRs and 34 THC-tolerant controls to take part in this study. All patients with THC-induced ADRs were accessed through a review of medical records by physicians. EDTA blood of 3ml was collected to obtain the CNR1 gene (rs806365) and genotyping of this gene was conducted using the real-time PCR ViiA7 (ABI, Foster City, CA, USA) following the manufacturer’s instruction. Results: The sample consisted of 65 patients (40/61.54%) were females and (25/38.46%) were males, with an age range of 19-87 years, who have been treated with medical cannabis. In this study, the most common THC-induced ADRs were dry mouth and/or dry throat, tachycardia, nausea, and arrhythmia. Across the whole sample, we found that 52.31% of Thai patients carried a heterozygous variant (rs806365, CT allele). Moreover, the number of rs806365 (CC, homozygous variant) carriers totaled seventeen people (26.15%) amongst the subjects of Thai patients treated with medical cannabis. Furthermore, 17 out of 22 patients (77.27%) who experienced severe ADRs: Tachycardia and/or arrhythmia, carried an abnormal rs806365 gene (CT and CC alleles). Conclusions: The results propose that the rs806365 gene is widely distributed amongst the Thai population and there is a link between this gene and vulnerability to developing THC-induced ADRs after being treated with medical cannabis. Therefore, it is necessary to screen for the rs806365 gene before using medical cannabis to treat a patient.Keywords: rs806365, THC-induced adverse drug reactions, CB1 receptor, Thai population
Procedia PDF Downloads 101416 Modulation of Receptor-Activation Due to Hydrogen Bond Formation
Authors: Sourav Ray, Christoph Stein, Marcus Weber
Abstract:
A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation
Procedia PDF Downloads 175415 Calcitonin gene-related peptide Receptor Antagonists for Chronic Migraine – Real World Outcomes
Authors: B. J. Mahen, N. E. Lloyd-Gale, S. Johnson, W. P. Rakowicz, M. J. Harris, A. D. Miller
Abstract:
Background: Migraine is a leading cause of disability in the world. Calcitonin gene-related peptide (CGRP) receptor antagonists offer an approach to migraine prophylaxis by inhibiting the inflammatory and vasodilatory effects of CGRP. In recent years, NICE licensed the use of three CGRP-receptor antagonists: Fremanezumab, Galcanezumab, and Erenumab. Here, we present the outcomes of CGRP-antagonist treatment in a cohort of patients who suffer from episodic or chronic migraine and have failed at least three oral prophylactic therapies. Methods: We offered CGRP antagonists to 86 patients who met the NICE criteria to start therapy. We recorded the number of headache days per month (HDPM) at 0 weeks, 3 months, and 12 months. Of those, 26 patients were switched to an alternative treatment due to poor response or side effects. Of the 112 total cases, 9 cases did not sufficiently maintain their headache diary, and 5 cases were not followed up at 3 months. We have therefore included 98 sets of data in our analysis. Results: Fremanezumab achieved a reduction in HDPM by 51.7% at 3 months (p<0.0001), with 63.7% of patients meeting NICE criteria to continue therapy. Patients trialed on Galcanezumab attained a reduction in HDPM by 47.0% (p=0.0019), with 51.6% of patients meeting NICE criteria to continue therapy. Erenumab, however, only achieved a reduction in HDPM by 17.0% (p=0.29), and this was not statistically significant. Furthermore, 34.4%, 9.7%, and 4.9% of patients taking Fremanezumab, Galcanezumab, and Erenumab, respectively, continued therapy beyond 12 months. Of those who attempted drug holidays following 12 months of treatment, migraine symptoms relapsed in 100% of cases. Conclusion: We observed a significant improvement in HDPM amongst episodic and chronic migraine patients following treatment with Fremanezumab or Galcanezumab.Keywords: migraine, CGRP, fremanezumab, galcanezumab, erenumab
Procedia PDF Downloads 95414 Sexually Dimorphic Effects of Chronic Exercise and Myocytic Androgen Receptor Overexpression on Body Composition in Sprague dawley Rats
Authors: Sabrina Barsky, Ashley Monks
Abstract:
In humans, exercise improves symptoms of various pathological states, although exercise adaptations seem to differ in response to sex. Skeletal muscle anabolism is thought to be regulated by androgen receptor (AR) through poorly specified mechanisms. Interactions of AR and exercise on muscle phenotype remain inconclusive in males, and undetermined in females. We hypothesized that sex differences in exercise adaptations are regulated by the androgenic system and the type of exercise performed. Here we examined interactions between a muscle-specific AR overexpression transgene (HSA-AR) and forced aerobic exercise paradigm on muscle and adipose exercise adaptation in male and female rats. We used dual-energy X-ray absorptiometry (DXA) to examine body composition adaptations post 9-week exercise protocol. We replicated the effects of HSA-AR on body composition, with males only having increased % lean mass and reduced % fat mass (P<0.05). Aerobic exercise improved lean body phenotype significantly, with lesser indices of total and % fat mass (P<0.01) in both sexes. Sex-specific effects of exercise included decreased total body mass (P<0.01) in males and increased lean mass % (P<0.001) in females. Surprisingly, neither AR manipulation nor exercise affected bone parameters in either sex. This varied response in total mass and lean mass according to exercise presents a sexually dimorphic response to exercise. Neither sex showed an interaction between HSA-AR and forced aerobic exercise on body composition. Future work is proposed to examine the effects of exercise type (aerobic versus resistance) and the role of gonadal androgens in sexually dimorphic exercise-mediated mitochondrial adaptations. This work implicates the development of sex-specific exercise therapies.Keywords: androgen receptor, forced exercise, muscle physiology, sexual dimorphism
Procedia PDF Downloads 125413 Platelet-Derived Growth Factor-Β Receptor/P38 Pathway May Be the Potential Liver Damage Mechanisms Caused by Saikosaponin D
Authors: Li Chen, Feng Zhang, Shizhong Zheng
Abstract:
SaikosaponinD (SSD) is a major component of saikosaponins isolated from Bupleurumfalactum. Our current study was to examine the toxic effect of SSD on liver cells and explore the possible mechanism. The results demonstrated that SSD induced mouse liver injury and led to apoptosis in LO2 cells. HE staining and TUNEL analyses showed that SSD stimulated liver injury and hepatocyte apoptosis in vivo. Subsequent experiments showed that SSD down-regulated Bcl-2 but up-regulated Bax. In vitro, SSD-treated LO2 cells exhibited apparent down-regulated expression of p-p38. Moreover, PDGF-βR agonist PDGF-BB alone significantly upregulated p38 phosphorylation, while combined with SSD, p38 phosphorylation expression was reduced. Furthermore, shRNA-mediated PDGF-βR knockdown augmented the inactivation of p-p38 and Bcl2 but abrogated the activation of Bax, these results were more obvious when shRNA combined with SSD. These data indicated that SSD stimulated liver injury and apoptosis in hepatocytes and PDGF-βR /p38 pathway may be the potential mechanistic.Keywords: saikosaponin D, hepatotoxicity, liver injury, apoptosis, platelet-derived growth factor-β receptor, p38
Procedia PDF Downloads 399412 The Effects of Androgen Receptor Mutation on Cryptorchid Testes in 46, XY Female
Authors: Ihtisham Bukhari
Abstract:
In the current study, we enrolled a 46, XY phenotypically female patient bearing testes in her inguinal canal. DNA sequencing of the AR gene detected a missense mutation C.1715A > G (p. Y572C) in exon 2 which is already known to cause Complete androgen insensitivity syndrome (CAIS). We further studied the effects of this mutation on the testicular histopathology of the patient. No spermatocytes were seen in the surface spreading of testicular tissues while H&E staining showed that seminiferous tubules predominantly have only Sertoli cells. To confirm this meiotic failure is likely due to the current AR mutation we performed mRNA expression of genes associated with AR pathway, expression and location of the associated proteins in testicular tissues. Western blot and real-time PCR data showed that the patient had high levels of expression of AMH, SOX9, and INNB in testis. Tubules were stained with SOX9 and AMH which revealed Sertoli cell maturation arrest. Therefore, we suggest that AR mutation enhances AMH expression which ultimately leads to failure in the maturation of Sertoli cells and failure in spermatogenesis.Keywords: androgen receptor, spermatogenesis, infertility, Sertoli cell only syndrome
Procedia PDF Downloads 143