Search results for: electronic learning platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10441

Search results for: electronic learning platform

1531 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 104
1530 Perception of Risks of the Telecommunication Towers in Malaysia: A Qualitative Inquiry

Authors: Y. Kamarulzaman, A. Madun, F. D. Yusop, N. Abdullah, N. K. Hoong

Abstract:

In 2011, the Malaysian Government has initiated a nationwide project called 1BestariNet which will adopt the using of technology in teaching and learning, resulting in the construction of telecommunication towers inside the public schools’ premise. Using qualitative approach, this study investigated public perception of risks associated with the project, particularly the telecommunication towers. Data collection involved observation and in-depth interviews with 22 individuals consist of a segment of public that was anxious about the risks of radio frequency electromagnetic field (RFEMF) which include two employees of telecommunication companies (telcos) and five employees of Government agencies. Observation of the location of the towers at 10 public schools, a public forum, and media reports provide valuable information in our analysis. The study finds that the main concern is related to the health risks. This study also shows that it is not easy for the Government to manage public perception mainly because it involves public trust. We find that risk perception is related with public trust, as well as the perceived benefits and level of knowledge. Efficient communication and continuous engagement with the local communities help to build and maintain public trust, reduce public fear and anxiety, hence mitigating the risk perception among the public.

Keywords: risk perception, risk communication, trust, telecommunication tower, radio frequency electromagnetic field (RFEMF)

Procedia PDF Downloads 324
1529 Analysis of Capillarity Phenomenon Models in Primary and Secondary Education in Spain: A Case Study on the Design, Implementation, and Analysis of an Inquiry-Based Teaching Sequence

Authors: E. Cascarosa-Salillas, J. Pozuelo-Muñoz, C. Rodríguez-Casals, A. de Echave

Abstract:

This study focuses on improving the understanding of the capillarity phenomenon among Primary and Secondary Education students. Despite being a common concept in daily life and covered in various subjects, students’ comprehension remains limited. This work explores inquiry-based teaching methods to build a conceptual foundation of capillarity by examining the forces involved. The study adopts an inquiry-based teaching approach supported by research emphasizing the importance of modeling in science education. Scientific modeling aids students in applying knowledge across varied contexts and developing systemic thinking, allowing them to construct scientific models applicable to everyday situations. This methodology fosters the development of scientific competencies such as observation, hypothesis formulation, and communication. The research was structured as a case study with activities designed for Spanish Primary and Secondary Education students aged 9 to 13. The process included curriculum analysis, the design of an activity sequence, and its implementation in classrooms. Implementation began with questions that students needed to resolve using available materials, encouraging observation, experimentation, and the re-contextualization of activities to everyday phenomena where capillarity is observed. Data collection tools included audio and video recordings of the sessions, which were transcribed and analyzed alongside the students' written work. Students' drawings on capillarity were also collected and categorized. Qualitative analyses of the activities showed that, through inquiry, students managed to construct various models of capillarity, reflecting an improved understanding of the phenomenon. Initial activities allowed students to express prior ideas and formulate hypotheses, which were then refined and expanded in subsequent sessions. The generalization and use of graphical representations of their ideas on capillarity, analyzed alongside their written work, enabled the categorization of capillarity models: Intuitive Model: A visual and straightforward representation without explanations of how or why it occurs. Simple symbolic elements, such as arrows to indicate water rising, are used without detailed or causal understanding. It reflects an initial, immediate perception of the phenomenon, interpreted as something that happens "on its own" without delving into the microscopic level. Explanatory Intuitive Model: Students begin to incorporate causal explanations, though still limited and without complete scientific accuracy. They represent the role of materials and use basic terms such as ‘absorption’ or ‘attraction’ to describe the rise of water. This model shows a more complex understanding where the phenomenon is not only observed but also partially explained in terms of interaction, though without microscopic detail. School Scientific Model: This model reflects a more advanced and detailed understanding. Students represent the phenomenon using specific scientific concepts like ‘surface tension,’ cohesion,’ and ‘adhesion,’ including structured explanations connecting microscopic and macroscopic levels. At this level, students model the phenomenon as a coherent system, demonstrating how various forces or properties interact in the capillarity process, with representations on a microscopic level. The study demonstrated that the capillarity phenomenon can be effectively approached in class through the experimental observation of everyday phenomena, explained through guided inquiry learning. The methodology facilitated students’ construction of capillarity models and served to analyze an interaction phenomenon of different forces occurring at the microscopic level.

Keywords: capillarity, inquiry-based learning, scientific modeling, primary and secondary education, conceptual understanding, Drawing analysis.

Procedia PDF Downloads 20
1528 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 130
1527 The Influence of Gossip on the Absorption Probabilities in Moran Process

Authors: Jurica Hižak

Abstract:

Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.

Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat

Procedia PDF Downloads 100
1526 Vantage Point–Visual Culture, Popular Media, and Contemporary Educational Practice

Authors: Elvin Karaaslan Klose

Abstract:

In the field of Visual Culture, Art Education students are given the opportunity to discuss topics of interest that are closer to their own social life and media consumption habits. In contrast to the established corpus of literature and sources about Art History, educators are challenged to find topics and examples from Popular Culture and Contemporary Art that provide familiarity, depth and inspiration for students’ future practice, both as educators as well as artists. In order to establish a welcoming and fruitful discussion environment at the beginning of an introductory Visual Culture Education course with fourth year Art Education students, the class watched and subsequently discussed the movie “Vantage Point”. Using the descriptive method and content analysis; video recordings, discussion transcripts and learning diaries were summarized to highlight students’ critical points of view towards commonly experienced but rarely reflected on topics of Popular and Visual Culture. As an introduction into more theory-based forms of discussion, watching and intensely discussing a movie has proven useful by proving a combination of a familiar media type with an unfamiliar educational context. Resulting areas of interest have served as a starting point for later research, discussion and artistic production in the scope of an introductory Visual Culture Education course.

Keywords: visual culture, critical pedagogy, media literacy, art education

Procedia PDF Downloads 674
1525 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 77
1524 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 136
1523 Cognitive Stereotype Behaviors and Their Imprinting on the Individuals with Autism

Authors: Li-Ju Chen, Hsiang-Lin Chan, Hsin-Yi Kathy Cheng, Hui-Ju Chen

Abstract:

Stereotype behavior is one of the maladaptive syndromes of the individuals with autism. Most of the previous researches focused on the stereotype behavior with stimulating type, while less on the stereotype behavior about cognition (This research names it cognitive stereotype behavior; CSB). This research explored CSB and the rationality to explain CSB with imprinting phenomenon. After excluding the samples without CSB described, the data that came from 271 individuals with autism were recruited and analyzed with quantitative and qualitative analyses. This research discovers that : (1) Most of the individuals with autism originally came out CSB at 3 years old and more than a half of them appeared before 4 years old; The average age which firstly came out CSB was 6.10 years old, the average time insisting or ossifying CSB was 31.71 minutes each time and the average longest time which they last was 358.35 minutes (5.97 hours). (2) CSB demonstrates various aspects, this research classified them into 4 fields with 26 categories. They were categorized into sudden CSB or habitual CSB by imprinting performance. (3) Most of the autism commented that their CSBs were not necessary but they could not control them well. One-third of them appeared CSB suddenly and the first occurrence accompanied a strong emotional or behavioral response. (4) Whether respondent is the person with autism himself/herself or not was the critical element: on the awareness of the severity degree, disturbance degree, and the emotional /behavioral intensity at the first-time CSB happened. This study concludes imprinting could reasonably explain the phenomenon CSB forms. There are implications leading the individuals with autism and their family to develop coping strategies to promote individuals with autism having a better learning accomplishment and life quality in their future.

Keywords: autism, cognitive stereotype behavior, constructivism, imprinting, stereotype

Procedia PDF Downloads 134
1522 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 157
1521 Transitioning Teacher Identity during COVID-19: An Australian Early Childhood Education Perspective

Authors: J. Jebunnesa, Y. Budd, T. Mason

Abstract:

COVID-19 changed the pedagogical expectations of early childhood education as many teachers across Australia had to quickly adapt to new teaching practices such as remote teaching. An important factor in the successful implementation of any new teaching and learning approach is teacher preparation, however, due to the pandemic, the transformation to remote teaching was immediate. A timely question to be asked is how early childhood teachers managed the transition from face-to-face teaching to remote teaching and what was learned through this time. This study explores the experiences of early childhood educators in Australia during COVID-19 lockdowns. Data were collected from an online survey conducted through the official Facebook forum of “Early Childhood Education and Care Australia,” and a constructivist grounded theory methodology was used to analyse the data. Initial research results suggest changing expectations of teachers’ roles and responsibilities during the lockdown, with a significant category related to transitioning teacher identities emerging. The concept of transitioning represents the shift from the role of early childhood educator to educational innovator, essential worker, social worker, and health officer. The findings illustrate the complexity of early childhood educators’ roles during the pandemic.

Keywords: changing role of teachers, constructivist grounded theory, lessons learned, teaching during COVID-19

Procedia PDF Downloads 101
1520 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 37
1519 Ethical Foundations: The Impact of Teacher-Student Relationships on Educational Outcomes in the Kazakhstani Context

Authors: Aiman Turgaliyeva

Abstract:

This study investigates the ethical boundaries of teacher-student relationships and their impact on educational outcomes in Kazakhstan. The significance of this research lies in understanding how ethical considerations within these relationships influence students' academic success, motivation, and engagement. Ethical pedagogy, as seen through the lens of Nel Noddings' Ethics of Care and Vygotsky's Cultural-Historical Activity Theory, forms the theoretical framework, emphasizing relational ethics and the socio-cultural context of learning. Methodologically, a mixed-methods approach is employed, combining quantitative surveys using the Teacher-Student Relationship Scale (TSRS) and qualitative interviews with teachers, students, and parents. The research aims to quantify relationship quality and explore lived experiences, integrating both data types for a comprehensive analysis. Preliminary findings suggest that culturally grounded ethical practices in teacher-student relationships foster better educational outcomes, highlighting the importance of empathy, care, and cultural sensitivity in Kazakhstan’s classrooms. The study concludes that a balance between maintaining ethical boundaries and promoting supportive relationships is key to enhancing both academic and socio-cultural student development.

Keywords: ethics, teacher-student relationships, educational outcomes, perception, Kazakhstani context, qualitative research

Procedia PDF Downloads 41
1518 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application

Authors: Ramesh P., Aby Joseph

Abstract:

Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.

Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling

Procedia PDF Downloads 138
1517 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 168
1516 'How to Change Things When Change is Hard' Motivating Libyan College Students to Play an Active Role in Their Learning Process

Authors: Hameda Suwaed

Abstract:

Group work, time management and accepting others' opinions are practices rooted in the socio-political culture of democratic nations. In Libya, a country transitioning towards democracy, what is the impact of encouraging college students to use such practices in the English language classroom? How to encourage teachers to use such practices in educational system characterized by using traditional methods of teaching? Using action research and classroom research gathered data; this study investigates how teachers can use education to change their students' understanding of their roles in their society by enhancing their belonging to it. This study adjusts a model of change that includes giving students clear directions, sufficient motivation and supportive environment. These steps were applied by encouraging students to participate actively in the classroom by using group work and variety of activities. The findings of the study showed that following the suggested model can broaden students' perception of their belonging to their environment starting with their classroom and ending with their country. In conclusion, although this was a small scale study, the students' participation in the classroom shows that they gained self confidence in using practices such as group work, how to present their ideas and accepting different opinions. What was remarkable is that most students were aware that is what we need in Libya nowadays.

Keywords: educational change, students' motivation, group work, foreign language teaching

Procedia PDF Downloads 424
1515 Comparing Two Interventions for Teaching Math to Pre-School Students with Autism

Authors: Hui Fang Huang Su, Jia Borror

Abstract:

This study compared two interventions for teaching math to preschool-aged students with autism spectrum disorder (ASD). The first is considered the business as usual (BAU) intervention, which uses the Strategies for Teaching Based on Autism Research (STAR) curriculum and discrete trial teaching as the instructional methodology. The second is the Math is Not Difficult (Project MIND) activity-embedded, naturalistic intervention. These interventions were randomly assigned to four preschool students with ASD classrooms and implemented over three months for Project Mind. We used measurement gained during the same three months for the STAR intervention. In addition, we used A quasi-experimental, pre-test/post-test design to compare the effectiveness of these two interventions in building mathematical knowledge and skills. The pre-post measures include three standardized instruments: the Test of Early Math Ability-3, the Problem Solving and Calculation subtests of the Woodcock-Johnson Test of Achievement IV, and the Bracken Test of Basic Concepts-3 Receptive. The STAR curriculum-based assessment is administered to all Baudhuin students three times per year, and we used the results in this study. We anticipated that implementing these two approaches would improve the mathematical knowledge and skills of children with ASD. Still, it is crucial to see whether a behavioral or naturalistic teaching approach leads to more significant results.

Keywords: early learning, autism, math for pre-schoolers, special education, teaching strategies

Procedia PDF Downloads 169
1514 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 345
1513 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model

Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh

Abstract:

Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.

Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding

Procedia PDF Downloads 21
1512 Effectiveness of Dry Needling with and without Ultrasound Guidance in Patients with Knee Osteoarthritis and Patellofemoral Pain Syndrome: A Systematic Review and Meta-Analysis

Authors: Johnson C. Y. Pang, Amy S. N. Fu, Ryan K. L. Lee, Allan C. L. Fu

Abstract:

Dry needling (DN) is one of the puncturing methods that involves the insertion of needles into the tender spots of the human body without the injection of any substance. DN has long been used to treat the patient with knee pain caused by knee osteoarthritis (KOA) and patellofemoral pain syndrome (PFPS), but the effectiveness is still inconsistent. This study aimed to conduct a systematic review and meta-analysis to assess the intervention methods and effects of DN with and without ultrasound guidance for treating pain and dysfunctions in people with KOA and PFPS. Design: This systematic review adhered to the PRISMA reporting guidelines. The registration number of the study protocol published in the PROSPERO database was CRD42021221419. Six electronic databases were searched manually through CINAHL Complete (1976-2020), Cochrane Library (1996-2020), EMBASE (1947-2020), Medline (1946-2020), PubMed (1966-2020), and Psychinfo (1806-2020) in November 2020. Randomized controlled trials (RCTs) and controlled clinical trials were included to examine the effects of DN on knee pain, including KOA and PFPS. The key concepts included were: DN, acupuncture, ultrasound guidance, KOA, and PFPS. Risk of bias assessment and qualitative analysis were conducted by two independent reviewers using the PEDro score. Results: Fourteen articles met the inclusion criteria, and eight of them were high-quality papers in accordance with the PEDro score. There were variations in the techniques of DN. These included the direction, depth of insertion, number of needles, duration of stay, needle manipulation, and the number of treatment sessions. Meta-analysis was conducted on eight articles. DN group showed positive short-term effects (from immediate after DN to less than 3 months) on pain reduction for both KOA and PFPS with the overall standardized mean difference (SMD) of -1.549 (95% CI=-0.588 to -2.511); with great heterogeneity (P=0.002, I²=96.3%). In subgroup analysis, DN demonstrated significant effects in pain reduction on PFPS (p < 0.001) that could not be found in subjects with KOA (P=0.302). At 3-month post-intervention, DN also induced significant pain reduction in both subjects with KOA and PFPS with an overall SMD of -0.916 (95% CI=-0.133 to -1.699, and great heterogeneity (P=0.022, I²=95.63%). Besides, DN induced significant short-term improvement in function with the overall SMD=6.069; 95% CI=8.595 to 3.544; with great heterogeneity (P<0.001, I²=98.56%) when analyzed was conducted on both KOA and PFPS groups. In subgroup analysis, only PFPS showed a positive result with SMD=6.089, P<0.001; while KOA showed statistically insignificant with P=0.198 in short-term effect. Similarly, at 3-month post-intervention, significant improvement in function after DN was found when the analysis was conducted in both groups with the overall SMD=5.840; 95% CI=9.252 to 2.428; with great heterogeneity (P<0.001, I²=99.1%), but only PFPS showed significant improvement in sub-group analysis (P=0.002, I²=99.1%). Conclusions: The application of DN in KOA and PFPS patients varies among practitioners. DN is effective in reducing pain and dysfunction at short-term and 3-month post-intervention in individuals with PFPS. To our best knowledge, no study has reported the effects of DN with ultrasound guidance on KOA and PFPS. The longer-term effects of DN on KOA and PFPS are waiting for further study.

Keywords: dry needling, knee osteoarthritis, patellofemoral pain syndrome, ultrasound guidance

Procedia PDF Downloads 138
1511 Psychosocial Challenges of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients at St. Peter TB Specialized Hospital in Addis Ababa

Authors: Tamrat Girma Biru

Abstract:

Multidrug-resistant tuberculosis (MDR-TB) is defined as resistant to at least Refampicin and Isoniazed: the most two power full TB drugs. It is a leading cause of high rates of morbidity and mortality, and increasing psychosocial challenges to patients, especially when co-infected with Human Immunodeficiency Virus (HIV). Ethiopia faces the highest rates of MDR-TB infection in the world. Objectives: The main objective of this study was to identify the psychosocial challenges of MDR-TB patients, to investigate the extent of the psychosocial challenges on (self-esteem, depression, and stigma) that MDR-TB patients encounter, to examine whether there is a sex difference in experiencing psychosocial challenges and assess the counseling needs of MDR-TB patients. Methodology: A cross-sectional study was conducted at St. Peter TB Specialized Hospital, Addis Ababa on 40 patients (25 males and 15 females) who are hospitalized for treatment. The patients were identified by using purposive sampling and made fill a questionnaire measuring their level of self-esteem, depression and stigma. Besides, data were collected from 16 participants, 28 care providers and 8 guardians, using semi-structured interview. The obtained data were analyzed using SPSS statistical program, descriptive statistics, independent t-test, and qualitative description. Results and Discussion: The results of the study showed that the majority (80%) of the respondents had suffered psychological challenges and social discriminations. Thus, the significance of MDR-TB and its association with HIV/AIDS problems is considered. Besides the psychosocial challenges, various aggravating factors such as length of treatment, drug burden and insecurity in economy together highly challenges the life of patients. In addition, 60% of participants showed low level of self-esteem. The patients also reported that they experienced high self-stigma and stigma by other members of the society. The majority of the participants (75%) showed moderate and severe level of depression. In terms of sex there is no difference between the mean scores of males and females in the level of depression and stigmatization by others and by themselves. But females showed lower level of self-esteem than males. The analysis of the t-test also shows that there were no statistically significant sex difference on the level of depression and stigma. Based on the qualitative data MDR-TB patients face various challenges in their life sphere such as: Psychological (depression, low self value, lowliness, anxiety), social (stigma, isolation from social relations, self-stigmatization,) and medical (drug side effect, drug toxicity, drug burden, treatment length, hospital stays). Recommendations: Based on the findings of this study possible recommendations were forwarded: develop and extend MDR-TB disease awareness creation through by media (printing and electronic), school net TB clubs, and door to door community education. Strengthen psychological wellbeing and social relationship of MDR-TB patients using proper and consistent psychosocial support and counseling. Responsible bodies like Ministry of Health (MOH) and its stakeholders and Non Governmental Organizations (NGOs) need to assess the challenges of patients and take measures on this pressing issue.

Keywords: psychosocial challenges, counseling, multi-drug resistant tuberculosis (MDR-TB), tuberculosis therapy

Procedia PDF Downloads 396
1510 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 521
1509 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 186
1508 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 254
1507 A Systematic Review Of Literature On The Importance Of Cultural Humility In Providing Optimal Palliative Care For All Persons

Authors: Roseanne Sharon Borromeo, Mariana Carvalho, Mariia Karizhenskaia

Abstract:

Healthcare providers need to comprehend cultural diversity for optimal patient-centered care, especially near the end of life. Although a universal method for navigating cultural differences would be ideal, culture’s high complexity makes this strategy impossible. Adding cultural humility, a process of self-reflection to understand personal and systemic biases and humbly acknowledging oneself as a learner when it comes to understanding another's experience leads to a meaningful process in palliative care generating respectful, honest, and trustworthy relationships. This study is a systematic review of the literature on cultural humility in palliative care research and best practices. Race, religion, language, values, and beliefs can affect an individual’s access to palliative care, underscoring the importance of culture in palliative care. Cultural influences affect end-of-life care perceptions, impacting bereavement rituals, decision-making, and attitudes toward death. Cultural factors affecting the delivery of care identified in a scoping review of Canadian literature include cultural competency, cultural sensitivity, and cultural accessibility. As the different parts of the world become exponentially diverse and multicultural, healthcare providers have been encouraged to give culturally competent care at the bedside. Therefore, many organizations have made cultural competence training required to expose professionals to the special needs and vulnerability of diverse populations. Cultural competence is easily standardized, taught, and implemented; however, this theoretically finite form of knowledge can dangerously lead to false assumptions or stereotyping, generating poor communication, loss of bonds and trust, and poor healthcare provider-patient relationship. In contrast, Cultural humility is a dynamic process that includes self-reflection, personal critique, and growth, allowing healthcare providers to respond to these differences with an open mind, curiosity, and awareness that one is never truly a “cultural” expert and requires life-long learning to overcome common biases and ingrained societal influences. Cultural humility concepts include self-awareness and power imbalances. While being culturally competent requires being skilled and knowledgeable in one’s culture, being culturally humble involves the sometimes-uncomfortable position of healthcare providers as students of the patient. Incorporating cultural humility emphasizes the need to approach end-of-life care with openness and responsiveness to various cultural perspectives. Thus, healthcare workers need to embrace lifelong learning in individual beliefs and values on suffering, death, and dying. There have been different approaches to this as well. Some adopt strategies for cultural humility, addressing conflicts and challenges through relational and health system approaches. In practice and research, clinicians and researchers must embrace cultural humility to advance palliative care practices, using qualitative methods to capture culturally nuanced experiences. Cultural diversity significantly impacts patient-centered care, particularly in end-of-life contexts. Cultural factors also shape end-of-life perceptions, impacting rituals, decision-making, and attitudes toward death. Cultural humility encourages openness and acknowledges the limitations of expertise in one’s culture. A consistent self-awareness and a desire to understand patients’ beliefs drive the practice of cultural humility. This dynamic process requires practitioners to learn continuously, fostering empathy and understanding. Cultural humility enhances palliative care, ensuring it resonates genuinely across cultural backgrounds and enriches patient-provider interactions.

Keywords: cultural competency, cultural diversity, cultural humility, palliative care, self-awareness

Procedia PDF Downloads 66
1506 A New Development Pathway And Innovative Solutions Through Food Security System

Authors: Osatuyi Kehinde Micheal

Abstract:

There is much research that has contributed to an improved understanding of the future of food security, especially during the COVID-19 pandemic. A pathway was developed by using a local community kitchen in Muizenberg in western cape province, cape town, south Africa, a case study to map out the future of food security in times of crisis. This kitchen aims to provide nutritious, affordable, plant-based meals to our community. It is also a place of diverse learning, sharing, empowering the volunteers, and growth to support the local economy and future resilience by sustaining our community kitchen for the community. This document contains an overview of the story of the community kitchen on how we create self-sustainability as a new pathway development to sustain the community and reduce Zero hunger in the regional food system. This paper describes the key elements of how we respond to covid-19 pandemic by sharing food parcels and creating 13 soup kitchens across the community to tackle the immediate response to covid-19 pandemic and agricultural systems by growing home food gardening in different homes, also having a consciousness Dry goods store to reduce Zero waste and a local currency as an innovation to reduce food crisis. Insights gained from our article and outreach and their value in how we create adaptation, transformation, and sustainability as a new development pathway to solve any future problem crisis in the food security system in our society.

Keywords: sustainability, food security, community development, adapatation, transformation

Procedia PDF Downloads 81
1505 Topics of Blockchain Technology to Teach at Community College

Authors: Penn P. Wu, Jeannie Jo

Abstract:

Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.

Keywords: blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies

Procedia PDF Downloads 135
1504 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 323
1503 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning

Authors: George Onomah

Abstract:

Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.

Keywords: ICT, Mathematics, integration, barriers

Procedia PDF Downloads 45
1502 Investigating the Efficacy of Developing Critical Thinking through Literature Reading

Authors: Julie Chuah Suan Choo

Abstract:

Due to the continuous change in workforce and the demands of the global workplace, many employers had lamented that the majority of university graduates were not prepared in the key areas of employment such as critical thinking, writing, self-direction and global knowledge which are most needed for the purposes of promotion. Further, critical thinking skills are deemed as integral parts of transformational pedagogy which aims at having a more informed society. To add to this, literature teaching has recently been advocated for enhancing students’ critical thinking and reasoning. Thus this study explored the effects of incorporating a few strategies in teaching literature, namely a Shakespeare play, into a course design to enhance these skills. An experiment involving a pretest and posttest using the California Critical Thinking Skills Test (CCTST) were administered on 80 first-year students enrolled in the Bachelor of Arts programme who were randomly assigned into the control group and experimental group. For the next 12 weeks, the experimental group was given intervention which included guided in-class discussion with Socratic questioning skills, learning log to detect their weaknesses in logical reasoning; presentations and quizzes. The results of CCTST which included paired T-test using SPSS version 22 indicated significant differences between the two groups. Findings have significant implications on the course design as well as pedagogical practice in using literature to enhance students’ critical thinking skills.

Keywords: literature teaching, critical thinking, California critical thinking skills test (CCTST), course design

Procedia PDF Downloads 465