Search results for: facilitating conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10492

Search results for: facilitating conditions

1612 The Lived Experience of Caregiving as a Vulnerable Person: Preliminary Findings of an Applied Hermeneutic Phenomenology Study

Authors: Amanda Aliende da Matta

Abstract:

In different fields, there are people who have something that stands out. In the educational world, for example, it is clear when some teachers have something: they are the best teachers, but this is not directly attributed to their disciplines, methodologies, etc. It is that they have something that captivates, inspires, and motivates. But we also find this something in other contexts. In this thesis, the interest is in something that some marginalized people, such as Ab (fictitious name), have. Ab was born in a rural community and saw the lifestyle of his family change drastically as a consequence of structural changes in his village. The community became impoverished, and together with a group of teenagers, he decided to migrate to Spain in search of opportunities. His best friend drowned during the crossing. After arriving, he lived in indecent conditions and felt unsafe. He now suffers from anxiety and frequently faints from it. Yet, he’s linked to Joves x la pau (a Christian project, although he is a Muslim), distributing food for people who live on the streets every Thursday afternoon. When he asked about what happens on cold and rainy days, he explained simply: "if it rains, I distribute the food, and immediately I get home, take a bath, and sleep warm under my roof. That is when we most have to go." This something he has will be called caring. And one of the general objectives of the thesis is to discover what are the meaning structures of this caring what is the lived experience of this caring. In this communication, preliminary results of an Applied Hermeneutic Phenomenology (AHP) study on the lived experience of caring as a vulnerable person are presented. The research means to answer what is the lived experience of caring as a vulnerable person. That is, to describe and explain what it is like to caregive for a vulnerable person, what it is, essentially, to caregive for a vulnerable person, what makes the lived experience of caregiving for a vulnerable person different from any other. In order to investigate the meaning of the phenomenon of caregiving as a vulnerable person, as already stated, the method used will be Applied Hermeneutic Phenomenology (AHP). We base ourselves, initially, on the proposal of Raquel Ayala-Carabajo and Max Van Manen. As Van Manen (1990) explains, AHP is a method that works essentially through fieldwork, with the collection of data on lived experience (experiential material). It is a phenomenology of practice. We here present the provisional themes we found: caregiving as a vulnerable person is seeing yourself in the other, identifying with the care-receiver; Caregiving as a vulnerable person is putting the other’s need before oneself’s; Caregiving as a vulnerable person is temporarily overcoming your weaknesses to make yourself strong for the other; Caregiving as a vulnerable person is going beyond the conventional approach; and Caregiving as a vulnerable person is taking responsibility even if it’s not yours.

Keywords: applied hermeneutic phenomenology, care ethics, hermeneutics, phenomenology

Procedia PDF Downloads 95
1611 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 272
1610 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng

Abstract:

The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 249
1609 Inhibition Theory: The Development of Subjective Happiness and Life Satisfaction after Experiencing Severe, Traumatic Life Events (Paraplegia)

Authors: Tanja Ecken, Laura Fricke, Anika Steger, Maren M. Michaelsen, Tobias Esch

Abstract:

Studies and applied experiences evidence severe and traumatic accidents to not only require physical rehabilitation and recovery but also to necessitate a psychological adaption and reorganization to the changed living conditions. Neurobiological models underpinning the experience of happiness and satisfaction postulate life shocks to potentially enhance the experience of happiness and life satisfaction, i.e., posttraumatic growth (PTG). This present study aims to provide an in-depth understanding of the underlying psychological processes of PTG and to outline its consequences on subjective happiness and life satisfaction. To explore the aforementioned, Esch’s (2022) ABC Model was used as guidance for the development of a questionnaire assessing changes in happiness and life satisfaction and for a schematic model postulating the development of PTG in the context of paraplegia. Two-stage qualitative interview procedures explored participants’ experiences of paraplegia. Specifically, narrative, semi-structured interviews (N=28) focused on the time before and after the accident, the availability of supportive resources, and potential changes in the perception of happiness and life satisfaction. Qualitative analysis (Grounded Theory) indicated an initial phase of reorganization was followed by a gradual psychological adaption to novel, albeit reduced, opportunities in life. Participants reportedly experienced a ‘compelled’ slowing down and elements of mindfulness, subsequently instilling a sense of gratitude and joy in relation to life’s presumed trivialities. Despite physical limitations and difficulties, participants reported an enhanced ability to relate to oneself and others and a reduction of perceived every day nuisances. Concluding, PTG can be experienced in response to severe, traumatic life events and has the potential to enrich the lives of affected persons in numerous, unexpected and yet challenging ways. PTG appears to be spectrum comprised of an interplay of internal and external resources underpinned by neurobiological processes. Participants experienced PTG irrelevant of age, gender, marital status, income or level of education.

Keywords: inhibition theory, posttraumatic growth, trauma, stress, life satisfaction, subjective happiness, traumatic life events, paraplegia

Procedia PDF Downloads 87
1608 Comparison of Soils of Hungarian Dry and Humid Oak Forests Based on Changes in Nutrient Content

Authors: István Fekete, Imre Berki, Áron Béni, Katalin Juhos, Marianna Makádi, Zsolt Kotroczó

Abstract:

The average annual precipitation significantly influences the moisture content of the soils and, through this, the decomposition of the organic substances in the soils, the leaching of nutrients from the soils, and the pH of the soils. Climate change, together with the lengthening of the vegetation period and the increasing CO₂ level, can increase the amount of biomass that is formed. Degradation processes, which accelerate as the temperature increases and slow down due to the drying climate, and the change in the degree of leaching can cancel out or strengthen each other's effects. In the course of our research, we looked for oak forests with climate-zonal soils where the geological, geographical and ecological background conditions are as similar as possible, apart from the different annual precipitation averages and the differences that can arise from them. We examined 5 dry and 5 humid Hungarian oak soils. Climate change affects the soils of drier and wetter forests differently. The aim of our research was to compare the content of carbon, nitrogen and some other nutrients, as well as the pH of the soils of humid and dry forests. Showing the effects of the drier climate on the tested soil parameters. In the case of the examined forest soils, we found a significant difference between the soils of dry and humid forests: in the case of the annual average precipitation values (p≥ 0.0001, for dry forest soils: 564±5.2 mm; for humid forest soils: 716±3.8 mm) for pH (p= 0.0004, for dry forest soils: 5.49±0.16; for wet forest soils: 5.36±0.21); for C content (p= 0.0054, for dry forest soils: 6.92%±0.59; for humid forest soils 3.09%±0.24), for N content (p= 0.0022, dry forest in the case of soils: 0.44%±0.047; in the case of humid forest soils: 0.23%±0.013), for the K content (p=0.0017, in the case of dry forest soils: 5684±732 (mg/kg); in the case of humid forest soils 2169±196 (mg/kg)), for the Ca content (p= 0.0096, for dry forest soils: 8207±2118 (mg/kg); for wet forest soils 957±320 (mg/kg)). No significant difference was found in the case of Mg. In a wetter environment, especially if the moisture content of the soil is also optimal for the decomposing organisms during the growing season, the decomposition of organic residues accelerates, and the processes of leaching from the soil are also intensified. The different intensity of the leaching processes is also well reflected in the quantitative differences of Ca and K, and in connection with these, it is also reflected in the difference in pH values. The differences in the C and N content can be explained by differences in the intensity of the decomposition processes. In addition to warming, drying is expected in a significant part of Hungary due to climate change. Thus, the comparison of the soils of dry and humid forests allows us to predict the subsequent changes in the case of the examined parameters.

Keywords: soil nutrients, precipitation difference, climate change, organic matter decomposition, leaching

Procedia PDF Downloads 77
1607 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 126
1606 Zooming into the Leadership Behaviours Desired by the 21st Century Workforce: Introduction of the Research Theory and Methods

Authors: Anita Bela, Marta Juhasz

Abstract:

Adapting to the always-changing environment comes with complex determinants. The authors are zooming into one aspect only when the current workforce comes with obstacles by being less keen to stay engaged, even short or mid-term, resulting in additional challenges impacting the business performance. Seeing these occurring in practice made the researchers eager to gain a better understanding of the reasons behind. The paper aims to provide an overview of the theoretical background and research methods planned for the different stages of the research. The theoretical part takes the leadership behaviors under lens while the focus is on finding ways to attract and retain those who prefer working under more flexible employment conditions (e.g. contractor, contingent worker, etc.). These are considered as the organizational values and along with the power of people management are having their engaging relevance. The organizational culture (visible or invisible level) is clearly the mirror of the set of shared values guiding all members of the companies towards acceptable behavior. The applied research method, inductive reasoning was selected since the focus and questions raised in this research are results of specific observations made on the employees (various employment types) and leaders of start-ups and corporates. By comparing the similarities and differences, the researchers are hoping to prove the readiness and agility of the start-up culture for the desired leadership behaviours of the current and future workforce against the corporate culture. While exploring the preferences and engaging factors of the 21st-century workforce the data gathering would happen through website analysis – using ATLAS.ti qualitative software – followed by interview sessions where demographics will be collected and preferred leadership behaviors - using the Critical Incident Technique. Moreover, a short engagement survey will be administered to understand the linkage between the organizational culture type and engagement level. To conclude, after gaining theoretical understanding, we will zoom back to the employees to reveal the behaviors to be followed to achieve engagement in an environment where nothing is stable and where the companies always must keep their agile eyes and reactions vivid.

Keywords: leadership behaviours, organizational culture, qualitative analysis, workforce engagement

Procedia PDF Downloads 117
1605 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels

Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei

Abstract:

Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.

Keywords: joint, interface, segment, contact

Procedia PDF Downloads 260
1604 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 431
1603 Youth Conflict-Related Trauma through Generations: An Ethnography on the Relationship between Health and Society in Post-Conflict Northern Ireland

Authors: Chiara Magliacane

Abstract:

This project aims to analyse the relationship between the post-conflict Northern Irish environment and youth trauma in deprived areas. Using an anthropological perspective and methodology, the study investigates the possible contribution that a socio-cultural perspective can give to the current research on the field, with a special focus on the role of transgenerational trauma. The recognition of the role that socio-economic determinants have on health is usually a challenge for social researchers. In post-conflict Northern Ireland, the overall lack of research about connections between the social context and youth trauma opens the way to the present project. Anthropological studies on social implications of mental disorders have achieved impressive results in many societies; they show how conditions of sufferance and poverty are not intrinsically given, but are the products of historical processes and events. The continuum of violence and the politics of victimhood sustains a culture of silence and fear in deprived areas; this implies the need of investigating the structural and symbolic violence that lies behind the diffusion of mental suffering. The project refers to these concepts from Medical Anthropology and looks at connections between trauma and social, political and economic structures. Accordingly, the study considers factors such as poverty, unemployment, social inequality and gender and class perspectives. At the same time, the project problematises categories such as youth and trauma. 'Trauma' is currently debated within the social sciences since the 'invention' of the Post-Traumatic Stress Disorder (PTSD) in 1980. Current critics made to its clinical conception show how trauma has been mainly analysed as a memory of the past. On the contrary, medical anthropological research focuses on wider perspectives on society and its structures; this is a new and original approach to the study of youth trauma considering that, to author’s best knowledge, there is no research of this kind regarding Northern Ireland. Methods: Qualitative interviews, participant observation. Expected Impact: Local Northern Ireland organizations, i.e. specific charities that provide mental health support. Ongoing and present connections will ensure they will hear about this research.

Keywords: health and social inequalities, Northern Ireland, structural violence, youth

Procedia PDF Downloads 213
1602 A Multilingual Model in the Multicultural World

Authors: Marina Petrova

Abstract:

Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.

Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia

Procedia PDF Downloads 224
1601 Coastal Water Quality Assessment in Hormozgan Province: Implications for Sustainable Marine Ecosystems and Aquaculture in the Persian Gulf

Authors: Sharareh Khodami, Mohammad Seddiq Mortazavi, Seyedeh Laili Mohebbi-Nozar, Fereshteh Saraji, S. Behzadi, Gholam Ali Akbarzadeh, Mitra Naemi, Pararin Bahreini

Abstract:

Water quality is a critical driver of healthy marine ecosystems and a cornerstone of the blue economy, particularly fisheries. The coastal waters of Hormozgan Province, located in the northern Persian Gulf and Gulf of Oman, are increasingly threatened by wastewater discharges from industrial, urban, and agricultural activities. This study evaluates the spatial and temporal patterns of coastal water quality over two decades (2001–2021), drawing on a comprehensive dataset from 200 sampling stations along the province’s shoreline. Key environmental parameters temperature, dissolved oxygen, pH, turbidity, nitrate, ammonium, phosphate, chlorophyll-a, and total bacteria count were analyzed. Using Geographic Information Systems (GIS), spatial distributions were mapped, and a Water Quality Index (WQI) was derived to classify overall water quality conditions. The weight and normalization factors were determined using the Analytic Hierarchy Process (AHP) and expert judgment, supported by questionnaires and a range of literature sources. Four distinct groups of experts contributed to this process: academics, researchers, government officials, and consultants. The WQI values ranged from weak to excellent, reflecting notable spatial variability. The interquartile range (IQR) method was applied to determine acceptable parameter ranges and establish early-warning thresholds for management. Zones were categorized into “caution” and “action” areas, guiding targeted interventions. Results highlight the significant impacts of sustained nutrient loading, particularly from nitrate and phosphate linked to anthropogenic sources, on coastal ecosystem health. These findings underscore the urgent need for stringent nutrient management policies to protect marine ecosystems, ensuring the long-term sustainability of fisheries and other marine resources in this region.

Keywords: coastal area, Hormozgan, Persian Gulf, water quality

Procedia PDF Downloads 10
1600 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 291
1599 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6

Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett

Abstract:

We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.

Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable

Procedia PDF Downloads 240
1598 A Review of Toxic and Non-Toxic Cyanobacteria Species Occurrence in Water Supplies Destined for Maize Meal Production Process: A Case Study of Vhembe District

Authors: M. Mutoti, J. Gumbo, A. Jideani

Abstract:

Cyanobacteria or blue green algae have been part of the human diet for thousands of years. Cyanobacteria can multiply quickly in surface waters and form blooms when favorable conditions prevail, such as high temperature, intense light, high pH, and increased availability of nutrients, especially phosphorous and nitrogen, artificially released by anthropogenic activities. Consumption of edible cyanotoxins such as Spirulina may reduce risks of cataracts and age related macular degeneration. Sulfate polysaccharides exhibit antitumor, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and even antiviral activity against HIV, herpes, and hepatitis. In humans, exposure to cyanotoxins can occur in various ways; however, the oral route is the most important. This is mainly through drinking water, or by eating contaminated foods; it may even involve ingesting water during recreational activities. This paper seeks to present a review on cyanobacteria/cyanotoxin contamination of water and food and implications for human health. In particular, examining the water quality used during maize seed that passes through mill grinding processes. In order to fulfil the objective, this paper starts with the theoretical framework on cyanobacteria contamination of food that will guide review of the present paper. A number of methods for decontaminating cyanotoxins in food is currently available. Therefore, physical, chemical, and biological methods for treating cyanotoxins are reviewed and compared. Furthermore, methods that are utilized for detecting and identifying cyanobacteria present in water and food were also informed in this review. This review has indicated various routes through which humans can be exposed to cyanotoxins. Accumulation of cyanotoxins, mainly microcystins, in food has raised an awareness of the importance of food as microcystins exposure route to human body. Therefore, this review demonstrates the importance of expanding research on cyanobacteria/cyanotoxin contamination of water and food for water treatment and water supply management, with focus on examining water for domestic use. This will help providing information regarding the prevention or minimization of contamination of water and food, and also reduction or removal of contamination through treatment processes and prevention of recontamination in the distribution system.

Keywords: biofilm, cyanobacteria, cyanotoxin, food contamination

Procedia PDF Downloads 164
1597 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province

Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari

Abstract:

The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.

Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis

Procedia PDF Downloads 74
1596 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant

Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen

Abstract:

Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.

Keywords: PAH, PSR, energy recovery, ferro alloy furnace

Procedia PDF Downloads 274
1595 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 151
1594 Research on Audiovisual Perception in Stairway Spaces of Mountain City Parks Based on Real-Scene EEG Monitoring

Authors: Yang Xinyu, Gong Cong, Hu Changjuan

Abstract:

Stairway spaces are a crucial component of the pathway systems and vertical transportation networks in mountain city parks. These spaces are closely integrated with the undulating terrain of mountain environments, resulting in continuously changing spatial conditions that can significantly influence participants' behavioral characteristics, thereby affecting their perception. EEG signals, which have been proven to reflect various non-attentive physiological activities in the brain, are widely used in studies related to stress recovery effects and emotional perception. Existing research predominantly examines the impact of spatial characteristics and landscape elements of trails and greenways in plain cities on participants' perception, utilizing EEG signals in laboratory-simulated environments. These studies have preliminarily revealed the relationship between spatial environments and perception preferences. However, on-site ergonomics research in mountain environments remains relatively underdeveloped. To address this gap, the Stairway spaces in Pipashan Park, Chongqing, were selected as the research object. Wearable hydrogel EEG devices were employed to monitor participants' EEG data in real environments, and a Generalized Linear Mixed Model (GLMM) was constructed to explore differences in participants' perception under different paths and modes of movement, as well as the impact of visual and auditory environmental elements within each path on their perception. The model analysis results indicate significant differences in EEG data across different paths and movement modes. Additionally, typical mountainous spatial characteristics, such as openness, green view index, and elevation difference, are identified as key factors influencing participants' EEG data. Higher levels of natural sound and green view index were shown to effectively alleviate participants' stress perception in mountain stairway spaces. The findings reveal the intrinsic connections between environment, behavior, and perception in stairway spaces of mountain city parks, providing a theoretical basis for optimizing the design of stairway spaces in mountain cities.

Keywords: audio-visual perception, EEG monitoring, mountain city park, real environment, stairway space

Procedia PDF Downloads 21
1593 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning

Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya

Abstract:

Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.

Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment

Procedia PDF Downloads 440
1592 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar

Authors: Bengi Hakguder Taze, Sevcan Unluturk

Abstract:

Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.

Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot

Procedia PDF Downloads 138
1591 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 356
1590 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 289
1589 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 204
1588 Narratives in Science as Covert Prestige Indicators

Authors: Zinaida Shelkovnikova

Abstract:

The language in science is changing and meets the demands of the society. We shall argue that in the varied modern world there are important reasons for the integration of narratives into scientific discourse. As far as nowadays scientists are faced with extremely prompt science development and progress; modern scientific society lives in the conditions of tough competition. The integration of narratives into scientific discourse is thus a good way to prompt scientific experience to different audiences and to express covert prestige of the discourse. Narratives also form the identity of the persuasive narrator. Using the narrative approach to the scientific discourse analysis we reveal the sociocultural diversity of the scientists. If you want to attract audience’s attention to your scientific research, narratives should be integrated into your scientific discourse. Those who understand this consistent pattern are considered the leading scientists. Taking into account that it is prestigious to be renowned, celebrated in science, it is a covert prestige to write narratives in science. We define a science narrative as the intentional, consequent, coherent, event discourse or a discourse fragment, which contains the author creativity, in some cases intrigue, and gives mostly qualitative information (compared with quantitative data) in order to provide maximum understanding of the research. Science narratives also allow the effective argumentation and consequently construct the identity of the persuasive narrator. However, skills of creating appropriate scientific discourse reflect the level of prestige. In order to teach postgraduate students to be successful in English scientific writing and to be prestigious in the scientific society, we have defined the science narrative and outlined its main features and characteristics. Narratives contribute to audience’s involvement with the narrator and his/her narration. In general, the way in which a narrative is performed may result in (limited or greater) contact with the audience. To gain these aim authors use emotional fictional elements; descriptive elements: adjectives; adverbs; comparisons and so on; author’s evaluative elements. Thus, the features of science narrativity are the following: descriptive tools; authors evaluation; qualitative information exceeds the quantitative data; facts take the event status; understandability; accessibility; creativity; logics; intrigue; esthetic nature; fiction. To conclude, narratives function covert prestige of the scientific discourse and shape the identity of the persuasive scientist.

Keywords: covert prestige, narrativity, scientific discourse, scientific narrative

Procedia PDF Downloads 401
1587 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis

Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz

Abstract:

During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.

Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs

Procedia PDF Downloads 210
1586 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks

Authors: Paul Shize Li, Frank Alber

Abstract:

A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.

Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation

Procedia PDF Downloads 171
1585 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 336
1584 Study on Spatial Structure and Evolvement Process of Traditional Villages’ Courtyard Based on Clannism

Authors: Liang Sun, Yi He

Abstract:

The origination and development of Chinese traditional villages have a strong link with clan society. Thousands of traditional villages are constituted by one big family who have the same surname. Villages’ basic social relationships are built on the basis of family kinship. Clan power controls family courtyards’ spatial structure and influences their evolvement process. Compared with other countries, research from perspective of clanism is a particular and universally applicable manner to recognize Chinese traditional villages’ space features. This paper takes traditional villages in astern Zhejiang province as examples, especially a single-clan village named Zoumatang. Through combining rural sociology with architecture, it clarifies the coupling relationship between clan structure and village space, reveals spatial composition and evolvement logic of family courtyards. Clan society pays much attention to the patrilineal kinship and genealogy. In astern Zhejiang province, clan is usually divided to ‘clan-branches-families’ three levels. Its structural relationship looks like pyramid, which results in ‘center-margin’ structure when projecting to villages’ space. Due to the cultural tradition of ancestor worship, family courtyards’ space exist similar ‘center-margin’ structure. Ancestor hall and family temple are respectively the space core of village and courtyard. Other parts of courtyard also shows order of superiority and inferiority. Elder and men must be the first. However, along with the disintegration of clan society, family courtyard gradually appears fragmentation trend. Its spatial structure becomes more and more flexible and its scale becomes smaller and smaller. Living conditions rather than ancestor worship turn out to be primary consideration. As a result, there are different courtyard historical prototype in different historic period. To some extent, Chinese present traditional villages’ conservation ignore the impact of clan society. This paper discovers the social significance of courtyard’s spatial texture and rebuilds the connection between society and space. It is expected to promote Chinese traditional villages’ conservation paying more attention to authenticity which defined in the historical process and integrity which built on the basis of social meaning.

Keywords: China, clanism, courtyard, evolvement process, spatial structure, traditional village

Procedia PDF Downloads 324
1583 Nitriding of Super-Ferritic Stainless Steel by Plasma Immersion Ion Implantation in Radio Frequency and Microwave Plasma System

Authors: H. Bhuyan, S. Mändl, M. Favre, M. Cisternas, A. Henriquez, E. Wyndham, M. Walczak, D. Manova

Abstract:

The 470 Li-24 Cr and 460Li-21 Cr are two alloys belonging to the next generation of super-ferritic nickel free stainless steel grades, containing titanium (Ti), niobium (Nb) and small percentage of carbon (C) and nitrogen (N). The addition of Ti and Nb improves in general the corrosion resistance while the low interstitial content of C and N assures finer precipitates and greater ductility compared to conventional ferritic grades. These grades are considered an economic alternative to AISI 316L and 304 due to comparable or superior corrosion. However, since 316L and 304 can be nitrided to improve the mechanical surface properties like hardness and wear; it is hypothesize that the tribological properties of these super-ferritic stainless steels grades can also be improved by plasma nitriding. Thus two sets of plasma immersion ion implantation experiments have been carried out, one with a high pressure capacitively coupled radio frequency plasma at PUC Chile and the other using a low pressure microwave plasma at IOM Leipzig, in order to explore further improvements in the mechanical properties of 470 Li-24 Cr and 460Li-21 Cr steel. Nitrided and unnitrided substrates have been subsequently investigated using different surface characterization techniques including secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive x-ray analysis, Vickers hardness, wear resistance, as well as corrosion test. In most of the characterizations no major differences have been observed for nitrided 470 Li-24 Cr and 460Li-21 Cr. Due to the ion bombardment, an increase in the surface roughness is observed for higher treatment temperature, independent of the steel types. The formation of chromium nitride compound takes place only at a treatment temperature around 4000C-4500C, or above. However, corrosion properties deteriorate after treatment at higher temperatures. The physical characterization results show up to 25 at.% of nitrogen for a diffusion zone of 4-6 m, and a 4-5 times increase in hardness for different experimental conditions. The samples implanted with temperature higher than 400 °C presented a wear resistance around two orders of magnitude higher than the untreated substrates. The hardness is apparently affected by the different roughness of the samples and their different profile of nitrogen.

Keywords: ion implantation, plasma, RF and microwave plasma, stainless steel

Procedia PDF Downloads 465